MHB Basic definite integral question

Click For Summary
The discussion revolves around calculating the definite integral and the average value of a function. The initial approach suggests summing two integrals over different intervals to find the total integral from 0 to 8. The correct method involves applying the average value formula, which incorporates both functions f(x) and g(x) in the calculation. The final expression for the average value of h(x) is derived from the integrals of f(x) and g(x) over specified intervals. The conversation emphasizes the importance of correctly applying integral properties to achieve accurate results.
TheFallen018
Messages
52
Reaction score
0
Hey, I've got this problem I've been doing, but I'm not sure if my approach is right. My textbook has pretty much less than a paragraph on this sort of stuff.

View attachment 8444

My thinking was that since an integral is a sum, in order to get the range from 0 to 8, we should just be able to add or subtract the definite integrals as required. eg. $\int_{0}^{5}f(\Theta )d\Theta + \int_{5}^{8}f(\Theta)d\Theta = \int_{0}^{8}f(\Theta)d\Theta = 3+8=11$

So, following this line of thinking, I found $\int_{0}^{8}h(x)dx$ to be $2*11-5=17$. Then, by dividing by 8, we should get the average value of $h(x)$ to be ($\frac{17}{8}$).

It feels like I'm missing something though. Does this look right? Thanks
 

Attachments

  • Screenshot_27.png
    Screenshot_27.png
    8.2 KB · Views: 127
Physics news on Phys.org
Yes, you would need to do this:
\begin{align*}
\langle h\rangle&=\frac18\int_0^8h(x)\,dx \\
&=\frac18\int_0^8(2f(x)-g(x))\,dx \\
&=\frac18\left[2\int_0^8f(x)\,dx-\int_0^8g(x)\,dx\right] \\
&=\frac18\left[2\left(\int_0^5f(x)\,dx+\int_5^8f(x)\,dx\right)-\left(\int_0^{10}g(x)\,dx-\int_8^{10}g(x)\,dx\right)\right].
\end{align*}
Then you can plug in what you know. Note: the $\langle h\rangle$ notation means "the average value of $h$."
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 29 ·
Replies
29
Views
4K
Replies
2
Views
3K
Replies
4
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K