Orodruin said:
I do not see which part about ##x_\mu## making little sense at all that was unclear. If ##x_\mu## does not make much sense
Einstein field equations include both contravariant and covariant indices.
I try to write einstein field equations to another form that includes simpler symbols, even if this form of the equation is much longer. As last simplification I tried to lower some indices, based on formula in
post13. so far I have got:
##R_{\mu\ \nu}-\frac{1}{2}*R*g_{\mu\ \nu}+\Lambda*g_{\mu\ \nu}=\frac{8*\pi*G}{c^4}*T_{\mu\ \nu}##
butting in ricci curvatur-tensor and scalar curvatur:
##\sum_{j_1=0}^D(\frac{\partial{\Gamma}^{j1\nu\mu}}{\partial x^{j_1}}-\frac{{\partial {\Gamma^{j_1}}_{j_1}}^{\mu}}{\partial x_{\nu}}+\sum_{j_2=0}^D({\Gamma^{j_1}}_{j_1 j_2}\Gamma^{j_2\nu\mu}-{\Gamma^{j_1\nu}}_{j_2 }{{\Gamma^{j_2}}_{j_1}}^{\mu}))+
(\Lambda-\frac{1}{2}*\sum_{i_1=0}^D(\sum_{i_2=0}^D(g_{i_1i_2}*\sum_{j_1=0}^D(\frac{\partial{\Gamma}{j1 i_2 i_1}}{\partial x^{j_1}}-\frac{{\partial{\Gamma^{j_1}}_{j_1}}^{i_1}}{\partial x_{i_2}}+\sum_{j_2=0}^D({\Gamma^{j_1}}_{j_1 j_2}\Gamma^{j_2 i_2 i_1 }-{\Gamma ^{j_1 i_2}}_{j_2}{{\Gamma^{j_2}}_{j_1}}^{i_1 })))))*g^{\mu,\nu}=\frac{8*\pi*G}{c^4}*T^{\mu,\nu}##
tring to lower indices:
##\sum_{m_1=0}^D(\sum_{m_2=0}^D(g^{\mu m_1}*g^{\nu m_2}\sum_{j_1=0}^D(\sum_{m_3=0}^D( g^{j_1 m_3}(\frac{\partial \Gamma_{m_3 m_2 m_1}}{\partial x^{j_1}}-\frac{{\partial \Gamma_{m_3 j_1 m_1}}}{\partial x^{m_2}}+\sum_{j_2=0}^D(\sum_{m_4=0}^D(g^{j_2 m_4}({\Gamma_{m_3 j_1 j_2}}{\Gamma_{m_4 m_2 m_1}}-{\Gamma_{m_3 m_2 j_2}}{\Gamma_{m_4 j_1 m_1}}))))))))+
(\Lambda-\frac{1}{2}*\sum_{i_1=0}^D(\sum_{m_1=0}^D(\sum_{i_2=0}^D(\sum_{m_2=0}^D(g_{i_1i_2}*g^{i_1m_1}*g^{i_2m_2}*\sum_{j_1=0}^D(\sum_{m_3=0}^D(g^{m_3 j_1}(\frac{\partial{\Gamma}_{m_3 m_2 m_1}}{\partial x^{j_1}}-\frac{\partial \Gamma_{m_3 j_1 m_1}}{\partial x^{m_2}}+\sum_{j_2=0}^D(\sum_{m_4=0}^D(g^{j_2m_4}(\Gamma_{m_3 j_1 j_2}\Gamma_{m_4 m_2 m_1 }-\Gamma_{m_3 m_2 j_2} \Gamma_{m_4 j_1 m_1})))))))))))*g^{\mu \nu}=\frac{8*\pi*G}{c^4}*T^{\mu \nu}##
are these simplification correct?
last equation is spread on many lines I do not know why.