MHB How Do We Find the Kernel and Image Bases Using Matrix C?

Click For Summary
SUMMARY

This discussion focuses on determining the kernel and image bases of the linear transformation defined by the matrix \( A = \begin{pmatrix}-1 & 2 \\ 2 & -4\end{pmatrix} \) using its transformation matrix \( C \). The kernel is found by solving \( A \cdot X = 0 \) or \( C \mathbf{x} = \mathbf{0} \), resulting in the basis \( \left \{\begin{pmatrix} 2 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 0 & 1 \end{pmatrix}\right \} \). The image basis is derived from the first two column vectors of the transformation matrix \( C \), which are \( \left \{\begin{pmatrix}-1 \\ 0 \\ 2 \\ 0\end{pmatrix}, \begin{pmatrix}0 \\ -1 \\ 0 \\ 2\end{pmatrix}\right \} \).

PREREQUISITES
  • Understanding of linear transformations and their representation using matrices.
  • Familiarity with concepts of kernel and image in linear algebra.
  • Ability to perform matrix operations and solve linear equations.
  • Knowledge of basis representation in vector spaces.
NEXT STEPS
  • Study the properties of linear transformations and their effects on vector spaces.
  • Learn about the Rank-Nullity Theorem and its implications for kernel and image dimensions.
  • Explore the use of MATLAB or Python for computational verification of kernel and image bases.
  • Investigate the geometric interpretations of kernel and image in the context of linear mappings.
USEFUL FOR

Mathematicians, students of linear algebra, and anyone interested in understanding linear transformations and their properties in vector spaces.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $A\in \mathbb{C}^{2\times 2}$ and $L_A:\mathbb{C}^{2\times 2}\rightarrow \mathbb{C}^{2\times 2}, \ X\mapsto A\cdot X$.

We consider the matrix \begin{equation*}A=\begin{pmatrix}-1 & 2 \\ 2 & -4\end{pmatrix}\end{equation*} and the basis \begin{equation*}B=\left \{\begin{pmatrix}1 & 0 \\ 0 & 0\end{pmatrix}, \begin{pmatrix}0 & 1 \\ 0 & 0\end{pmatrix} , \begin{pmatrix}0 & 0 \\ 1 & 0\end{pmatrix}, \begin{pmatrix}0 & 0 \\ 0 & 1\end{pmatrix}\right \}\end{equation*}

I have calculated the transformation matrix of $L_A$ in respect to the basis, which is the following:
\begin{equation*}C=\begin{pmatrix}-1 & 0 &2 &0 \\ 0 &-1 & 0 & 2 \\ 2 & 0 & -4 & 0 \\ 0 & 2 & 0 & -4\end{pmatrix}\end{equation*}

I want to determine a basis of the kernel of $L_A$ and a basis of the image of $L_A$.

Can we determine these using the transformation matrix $C$ ? Or how can we calculated the bases? (Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

Let $A\in \mathbb{C}^{2\times 2}$ and $L_A:\mathbb{C}^{2\times 2}\rightarrow \mathbb{C}^{2\times 2}, \ X\mapsto A\cdot X$.

We consider the matrix \begin{equation*}A=\begin{pmatrix}-1 & 2 \\ 2 & -4\end{pmatrix}\end{equation*} and the basis \begin{equation*}B=\left \{\begin{pmatrix}1 & 0 \\ 0 & 0\end{pmatrix}, \begin{pmatrix}0 & 1 \\ 0 & 0\end{pmatrix} , \begin{pmatrix}0 & 0 \\ 1 & 0\end{pmatrix}, \begin{pmatrix}0 & 0 \\ 0 & 1\end{pmatrix}\right \}\end{equation*}

I have calculated the transformation matrix of $L_A$ in respect to the basis, which is the following:
\begin{equation*}C=\begin{pmatrix}-1 & 0 &2 &0 \\ 0 &-1 & 0 & 2 \\ 2 & 0 & -4 & 0 \\ 0 & 2 & 0 & -4\end{pmatrix}\end{equation*}

I want to determine a basis of the kernel of $L_A$ and a basis of the image of $L_A$.

Can we determine these using the transformation matrix $C$ ? Or how can we calculated the bases? (Wondering)

Hey mathmari!

Yes.

Let $X=\begin{pmatrix} w&x\\y&z\end{pmatrix}$. Then the representation of $X$ with respect to the basis $B$ is $\mathbf x = \begin{pmatrix}w\\x\\y\\z\end{pmatrix}$, isn't it?

So we can find the kernel by either solving $AX=0$ or by solving $C\mathbf x = \mathbf 0$. (Thinking)

To find the image, consider that each column in $C$ represents a matrix in the image.
Can we find a basis from the column vectors in $C$? (Wondering)
 
I like Serena said:
Let $X=\begin{pmatrix} w&x\\y&z\end{pmatrix}$. Then the representation of $X$ with respect to the basis $B$ is $\mathbf x = \begin{pmatrix}w\\x\\y\\z\end{pmatrix}$, isn't it?

Why is that the representation? I got stuck right now. (Wondering)
I like Serena said:
So we can find the kernel by either solving $AX=0$ or by solving $C\mathbf x = \mathbf 0$. (Thinking)

Ah ok! So the kernel is $\ker (L_A)=\{X\in \mathbb{C}^{2\times 2} \mid L_A(X)=O \}=\{X\in \mathbb{C}^{2\times 2} \mid A\cdot X=O \}$.

So \begin{align*}A\cdot X=O\Rightarrow \begin{pmatrix}-1 & 2 \\ 2 & -4\end{pmatrix}\begin{pmatrix} w & x\\ y&z\end{pmatrix}=\begin{pmatrix} 0&0 \\ 0&0\end{pmatrix}\Rightarrow \begin{pmatrix}-w+2y & -x+2z \\ 2w-4y & 2x-4z\end{pmatrix}=\begin{pmatrix} 0&0 \\ 0&0\end{pmatrix}\Rightarrow \begin{cases} -w+2y=0 \\ -x+2z=0 \\ 2w-4y=0 \\ 2x-4z=0\end{cases}\Rightarrow \begin{cases} w=2y \\ x=2z\end{cases}\end{align*} So we get the kernel \begin{equation*}\left \{\begin{pmatrix} 2y & 2z\\ y&z\end{pmatrix}\middle |y,z\in \mathbb{C}\right \}=\left \{y\begin{pmatrix} 2 & 0\\ 1&0\end{pmatrix}+z\begin{pmatrix} 0 & 2\\ 0&1\end{pmatrix}\middle |y,z\in \mathbb{C}\right \}\end{equation*}
The basis is then \begin{equation*}\left \{\begin{pmatrix} 2 & 0\\ 1&0\end{pmatrix}, \begin{pmatrix} 0 & 2\\ 0&1\end{pmatrix}\right \}=\left \{2\begin{pmatrix} 1 & 0\\ 0&0\end{pmatrix}+\begin{pmatrix} 0 & 0\\ 1&0\end{pmatrix}, 2\begin{pmatrix} 0 & 1\\ 0&0\end{pmatrix}+\begin{pmatrix} 0 & 0\\ 0&1\end{pmatrix}\right \}=\left \{2b_1+b_3, 2b_2+b_4\right \}\end{equation*}
where $b_1=\begin{pmatrix}1 & 0 \\ 0 & 0\end{pmatrix}, \ b_2=\begin{pmatrix}0 & 1 \\ 0 & 0\end{pmatrix} , \ b_3=\begin{pmatrix}0 & 0 \\ 1 & 0\end{pmatrix}, \ b_4=\begin{pmatrix}0 & 0 \\ 0 & 1\end{pmatrix}$.

Is everything correct? (Wondering)
I like Serena said:
To find the image, consider that each column in $C$ represents a matrix in the image.
Can we find a basis from the column vectors in $C$? (Wondering)

The first two vectors of $C$ form the basis, or not? (Wondering)
 
mathmari said:
I like Serena said:
Let $X=\begin{pmatrix} w&x\\y&z\end{pmatrix}$. Then the representation of $X$ with respect to the basis $B$ is $\mathbf x = \begin{pmatrix}w\\x\\y\\z\end{pmatrix}$, isn't it?

Why is that the representation? I got stuck right now.

The meaning of the representation $\mathbf x = \begin{pmatrix}w\\x\\y\\z\end{pmatrix}$ with respect to a basis $\{\mathbf b_1, \mathbf b_2, \mathbf b_3, \mathbf b_4\}$ is that $\mathbf x = w\mathbf b_1 + x\mathbf b_2 + y\mathbf b_3 + z\mathbf b_4$.
It's just that if we don't mention a basis, it is assumed that we mean the standard basis $\{\mathbf e_1, \mathbf e_2, \mathbf e_3, \mathbf e_4\}$.

I like Serena said:
Ah ok! So the kernel is $\ker (L_A)=\{X\in \mathbb{C}^{2\times 2} \mid L_A(X)=O \}=\{X\in \mathbb{C}^{2\times 2} \mid A\cdot X=O \}$.

So \begin{align*}A\cdot X=O\Rightarrow \begin{pmatrix}-1 & 2 \\ 2 & -4\end{pmatrix}\begin{pmatrix} w & x\\ y&z\end{pmatrix}=\begin{pmatrix} 0&0 \\ 0&0\end{pmatrix}\Rightarrow \begin{pmatrix}-w+2y & -x+2z \\ 2w-4y & 2x-4z\end{pmatrix}=\begin{pmatrix} 0&0 \\ 0&0\end{pmatrix}\Rightarrow \begin{cases} -w+2y=0 \\ -x+2z=0 \\ 2w-4y=0 \\ 2x-4z=0\end{cases}\Rightarrow \begin{cases} w=2y \\ x=2z\end{cases}\end{align*} So we get the kernel \begin{equation*}\left \{\begin{pmatrix} 2y & 2z\\ y&z\end{pmatrix}\middle |y,z\in \mathbb{C}\right \}=\left \{y\begin{pmatrix} 2 & 0\\ 1&0\end{pmatrix}+z\begin{pmatrix} 0 & 2\\ 0&1\end{pmatrix}\middle |y,z\in \mathbb{C}\right \}\end{equation*}
The basis is then \begin{equation*}\left \{\begin{pmatrix} 2 & 0\\ 1&0\end{pmatrix}, \begin{pmatrix} 0 & 2\\ 0&1\end{pmatrix}\right \}=\left \{2\begin{pmatrix} 1 & 0\\ 0&0\end{pmatrix}+\begin{pmatrix} 0 & 0\\ 1&0\end{pmatrix}, 2\begin{pmatrix} 0 & 1\\ 0&0\end{pmatrix}+\begin{pmatrix} 0 & 0\\ 0&1\end{pmatrix}\right \}=\left \{2b_1+b_3, 2b_2+b_4\right \}\end{equation*}
where $b_1=\begin{pmatrix}1 & 0 \\ 0 & 0\end{pmatrix}, \ b_2=\begin{pmatrix}0 & 1 \\ 0 & 0\end{pmatrix} , \ b_3=\begin{pmatrix}0 & 0 \\ 1 & 0\end{pmatrix}, \ b_4=\begin{pmatrix}0 & 0 \\ 0 & 1\end{pmatrix}$.

Is everything correct?

Yep. All correct.
And we'll find the same result if we solve $C\mathbf x = \mathbf 0$.

I like Serena said:
The first two vectors of $C$ form the basis, or not?

Yep. Can we write those 2 vectors in $C$ as a basis? (Wondering)
 
I like Serena said:
The meaning of the representation $\mathbf x = \begin{pmatrix}w\\x\\y\\z\end{pmatrix}$ with respect to a basis $\{\mathbf b_1, \mathbf b_2, \mathbf b_3, \mathbf b_4\}$ is that $\mathbf x = w\mathbf b_1 + x\mathbf b_2 + y\mathbf b_3 + z\mathbf b_4$.
It's just that if we don't mention a basis, it is assumed that we mean the standard basis $\{\mathbf e_1, \mathbf e_2, \mathbf e_3, \mathbf e_4\}$.

Ah ok!

I like Serena said:
Yep. Can we write those 2 vectors in $C$ as a basis? (Wondering)

We have that the basis is \begin{equation*}\left \{\begin{pmatrix}-1 \\ 0 \\ 2 \\ 0\end{pmatrix}, \begin{pmatrix}0 \\ -1 \\ 0 \\ 2\end{pmatrix}\right \}=\left \{-b_1+2b_3, -b_2+2b_4\right \}\end{equation*} right? (Wondering)
 
mathmari said:
Ah ok!

We have that the basis is \begin{equation*}\left \{\begin{pmatrix}-1 \\ 0 \\ 2 \\ 0\end{pmatrix}, \begin{pmatrix}0 \\ -1 \\ 0 \\ 2\end{pmatrix}\right \}=\left \{-b_1+2b_3, -b_2+2b_4\right \}\end{equation*} right? (Wondering)

Yep. (Nod)
 
I like Serena said:
Yep. (Nod)

Great! Thank you very much! (Mmm)
 

Similar threads

  • · Replies 34 ·
2
Replies
34
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 52 ·
2
Replies
52
Views
4K
Replies
8
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
Replies
31
Views
3K
Replies
4
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K