Basis of set of skew symmetric nxn matrices

Click For Summary
The discussion focuses on determining the basis and dimensions of specific sets of matrices, including skew symmetric, traceless, and upper triangular nxn matrices. For all nxn matrices, the dimension is n², as each entry can be independently set to 1 while others are 0. For traceless matrices, the dimension is reduced to n² - 1 due to the constraint on the diagonal entries, allowing for n² - 1 arbitrary choices. Upper triangular matrices have a dimension of (n² + n)/2, as only the diagonal and upper entries can be freely chosen. The conversation emphasizes that there are infinitely many bases for these vector spaces, each with the same dimensionality.
indigogirl
Messages
8
Reaction score
0
Hi,

I am having trouble with the question above. In general, I have trouble with questions like:

What is the basis for all nxn matrices with trace 0? What is the dimension?

What is the basis of all upper triangular nxn matrices? What is the dimension?

Please help!
 
Physics news on Phys.org
Start counting. I hope you know that the dimension of the space of all nxn matrices is n2 because you can take anyone of the n2 entries 1, the other 0, to get a basis matrix.

There is no such thing as "the" basis for a vector space- any vector space has an infinite number of bases, each having the same number (the dimension) of vectors in it.

For the dimension of "all nxn matrices with trace 0", start by looking at small n. For n= 2, a 2x2 matrix is of the form
\left[\begin{array}{cc}a & b \\ c & d \end{array}\right]
Since we could choose anyone of the four entries, a, b, c, d equal to 1 its dimension is, as I said above, 22= 4. What about "traceless" matrices, with trace 0? Now we require that a+ d= 0. I could still choose b, c to be anything I want but now I must have d= -a. I can choose a to be whatever I want but then d is fixed- I have 3 arbitrary choices so the dimension is 3. A possible basis is
\left{\left[\begin{array}{cc}1 & 0 \\0 & -1\end{array}\right], \left[\begin{array}{cc}0 & 1 \\0 & 0\end{array}\right], \left[\begin{array}{cc}0 & 0 \\1 & 0\end{array}\right]\right}
where I have chosen a, b, c, in turn to be 1, others 0, with d= -a.

Okay, in a general axa matrix I could choose any of the n2 entries arbitrarily, but in a trace 0 matrix, I am not free to choose all the diagonal entries arbitrarily. Since I have one equation that must be satisfied, I could choose all but one of the diagonal entries arbitrarily, then solve for the last- I have n2- 1 arbitrary choices.

For upper triangular matrices, much the same thing. A general nxn matrix has n2 entries, n of them on the diagonal leaving n2- n "off diagonal" entries. Exactly half of those, (n2- n)/2, are above the diagonal and half below. With an upper triangular matrix, the entries below the diagonal must be 0 so I can't choose them arbitrarily. I can choose all the n entries on the diagonal and the (n2- n)/2 entries above the diagonal arbitrarily, a total of n+ (n2- n)/2= (n2+ n)/2 choices. Again, you can construct a basis (not "the" basis) by choosing each entry, in turn, to be 1, all others 0.
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K