Beam current of positrons and electrons

Click For Summary

Homework Help Overview

The discussion revolves around calculating the beam current of positrons and electrons, focusing on the energy produced during the annihilation process and how it relates to current and voltage in a particle accelerator context.

Discussion Character

  • Exploratory, Assumption checking, Problem interpretation

Approaches and Questions Raised

  • Participants discuss the energy from the annihilation process and its implications for calculating current. There are questions about the validity of using photon wavelength for positrons and the correct interpretation of voltage in this context. Some participants explore the relationship between power, energy, and the number of positrons needed per second.

Discussion Status

There is an ongoing exploration of the calculations involved, with some participants providing guidance on the steps. Questions remain about the assumptions made regarding the annihilation process and the contributions to beam current from both positrons and electrons.

Contextual Notes

Participants are navigating the complexities of particle interactions and the definitions of current in the context of a beam of positrons, with some confusion about the roles of positrons and electrons in the calculations.

songoku
Messages
2,509
Reaction score
393
Homework Statement
a. If a positron beam were to be used as an annihilation cutting tool, calculate the beam current that would deliver 100 kW.

b. What voltage would be needed to accelerate beam of electrons so that, at the same beam current, it could deliver the same power from mechanical collisions with the target?
Relevant Equations
##E=mc^2##

##E=hf##

##\lambda = \frac h p##

##\frac{1}{2} mv^2 = q.V##

P = V.I
a) My idea is:
1. Find the energy created by annihilation process, which is ##E=2mc^2## where m is the mass of electron
2. Find the wavelength of photon by using formula E = hf
3. Find the speed of positron by using the formula of de broglie wavelength
4. Find the p.d by using conservation of energy: ##\frac{1}{2} mv^2 = q.V##
5. Find current by using P = V.I

I am not sure at step (3) because I use the wavelength of photon as wavelength of positron. Can I do this?

b) I just use P = V.I to find V, which is the same as what I found in part (a) step (4)

Am I correct? Thanks
 
Physics news on Phys.org
Step 1 looks good. None of the rest made much sense to me. A positron is not a photon. And what voltage do you think you are finding?

After step 1, how many positrons/sec are needed?
 
  • Like
Likes   Reactions: hutchphd, songoku and berkeman
haruspex said:
Step 1 looks good. None of the rest made much sense to me. A positron is not a photon. And what voltage do you think you are finding?
I am thinking about accelerating voltage to accelerate the positron

haruspex said:
After step 1, how many positrons/sec are needed?
Number of positrons per second needed = ##\frac{P}{E}## where P is the power given by the question and E is the energy calculated in step 1

Next I multiply the result by charge of positron to get the beam current. Is this correct?

For b), is it correct to just apply P = V.I ?

Thanks
 
songoku said:
Number of positrons per second needed = ##\frac{P}{E}## where P is the power given by the question and E is the energy calculated in step 1
Wait, should I multiply ##\frac{P}{E}## by 2? I imagine for the annihilation process, the positron and electron will move towards each other then collide so both of them will contribute to the beam current

Thanks
 
songoku said:
Wait, should I multiply ##\frac{P}{E}## by 2? I imagine for the annihilation process, the positron and electron will move towards each other then collide so both of them will contribute to the beam current

Thanks
The electrons are in the target, not leaping out if it. Besides, you are asked for the beam current of the positrons.
 
  • Like
Likes   Reactions: songoku
Thank you very much haruspex
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
919
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
5K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K