McLaren Rulez
- 289
- 3
Hi,
If we describe a beam splitter as follows:
e^{ikx} -> \sqrt{T}e^{ikx} + \sqrt{R}e^{i\theta}e^{iky}
e^{iky} -> \sqrt{T}e^{iky} + \sqrt{R}e^{i\theta'}e^{ikx}
then \theta+\theta'=\pi is a condition to ensure conservation of energy according to my text.
I tried working this out by taking Ae^{ikx}+Be^{iky} incident on a beam splitter. The incident energy is A^{2}+B^{2}.
The output is
A\sqrt{T}e^{ikx} + A\sqrt{R}e^{i\theta}e^{iky} +B\sqrt{T}e^{iky} + B\sqrt{R}e^{i\theta'}e^{ikx}
Its energy is A^{2} + B^{2} + AB\sqrt{TR}(e^{i\theta}+e^{-i\theta})+AB\sqrt{TR}(e^{i\theta'}+e^{-i\theta'})
So, to preserve conservation, we must have 2cos(\theta)+2cos(\theta')=0
That gives \theta+\theta'=\pi or \theta -\theta'=\pi. But I never see this second result anywhere. Why is it there and how is it eliminated?
Thank you
If we describe a beam splitter as follows:
e^{ikx} -> \sqrt{T}e^{ikx} + \sqrt{R}e^{i\theta}e^{iky}
e^{iky} -> \sqrt{T}e^{iky} + \sqrt{R}e^{i\theta'}e^{ikx}
then \theta+\theta'=\pi is a condition to ensure conservation of energy according to my text.
I tried working this out by taking Ae^{ikx}+Be^{iky} incident on a beam splitter. The incident energy is A^{2}+B^{2}.
The output is
A\sqrt{T}e^{ikx} + A\sqrt{R}e^{i\theta}e^{iky} +B\sqrt{T}e^{iky} + B\sqrt{R}e^{i\theta'}e^{ikx}
Its energy is A^{2} + B^{2} + AB\sqrt{TR}(e^{i\theta}+e^{-i\theta})+AB\sqrt{TR}(e^{i\theta'}+e^{-i\theta'})
So, to preserve conservation, we must have 2cos(\theta)+2cos(\theta')=0
That gives \theta+\theta'=\pi or \theta -\theta'=\pi. But I never see this second result anywhere. Why is it there and how is it eliminated?
Thank you