- #1

calisoca

- 28

- 0

## Homework Statement

Okay, I think I'm finally getting the hang of these antiderivatives. However, I'm still stumbling some on trigonometric functions.

Find the antiderivative of [tex]f(\theta) \ = \ \frac{1 + \cos^2{\theta}}{\cos^2{\theta}} [/tex]

## Homework Equations

[tex] f(\theta) \ = \ \frac{1 + \cos^2{\theta}}{\cos^2{\theta}} [/tex]## The Attempt at a Solution

1.) [tex] f(\theta) \ = \ \frac{1 + \cos^2{\theta}}{\cos^2{\theta}} [/tex]

2.) [tex] f(\theta) \ = \ \frac{1}{\cos^2{\theta}}} \ + \ \frac{cos^2{\theta}}{cos^2{\theta}} [/tex]

3.) [tex] f(\theta) \ = \ \frac{1}{\cos^2{\theta}}} \ + \ 1 [/tex]

4.) Trigonometric Identity: [tex] \frac{1}{\cos^2{\theta}}} \ = \ \csc^2{\theta} [/tex]

5.) [tex] f(\theta) \ = \ \csc^2{\theta}\ + \ 1 [/tex]

6.) [tex] F(\theta) \ = \ -\cot{\theta} \ + \ \theta [/tex]Where have I gone wrong? I know the answer isn't correct, but I'm not sure what I have done wrong here?

Last edited: