Block Moving Down A Moving Wedge

  • Thread starter Thread starter GnG.Vike13
  • Start date Start date
  • Tags Tags
    Block Wedge
Click For Summary
SUMMARY

The discussion focuses on the dynamics of a 5kg block sliding down a frictionless 10kg wedge inclined at 30 degrees. When released, the block accelerates down the wedge while simultaneously causing the wedge to move in the opposite direction. The participants emphasize the importance of analyzing forces using free body diagrams (FBD) and Newton's Laws to determine the relationship between the accelerations of both objects. Key points include the conservation of energy and the positive work done by gravity on both the block and the wedge.

PREREQUISITES
  • Understanding of Newton's Laws of Motion
  • Ability to create and interpret Free Body Diagrams (FBD)
  • Knowledge of basic concepts in mechanics, including acceleration and forces
  • Familiarity with conservation of energy principles
NEXT STEPS
  • Study the relationship between the accelerations of objects in a two-body system
  • Learn how to apply Newton's Laws to problems involving inclined planes
  • Explore the concept of work and energy in mechanical systems
  • Investigate the effects of friction on motion in similar scenarios
USEFUL FOR

Students studying physics, particularly those focusing on mechanics, as well as educators looking for practical examples of dynamics involving multiple objects and forces.

GnG.Vike13
Messages
11
Reaction score
0

Homework Statement



A mass of 5kg and wedge of 10kg are held at rest. All surfaces are frictionless. No outside forces are acting on the system. θ of the wedge is 30°. Once the block and wedge are let go, what happens to both objects? What is the acceleration of the block left/right and what is the acceleration of the block down the wedge?

Homework Equations



I seriously do not get this problem at all.

The Attempt at a Solution



When I made a fbd, and split both masses into x and y components, it showed that the wedge will accelerate in the opposite direction of the block's acceleration.

Anyone understand this?
 
Physics news on Phys.org
GnG.Vike13 said:
... anyone? I just don't why the block will continue to move along with the wedge if the wedge goes backwards.
Why not? The block slides down the wedge, pushing the wedge backwards. If you viewed their motion with respect to the ground, how would it look?
 
Doc Al said:
Why not? The block slides down the wedge, pushing the wedge backwards. If you viewed their motion with respect to the ground, how would it look?

Thank you for the reply.

I understand that the block will continue to move down along the block... But we had a problem with this concerning conservation of energy. But the work that the block does on the wedge is positive and the work that the wedge does on the block is positive, why is energy conserved? It doesn't make sense.
 
Why doesn't it make sense? Don't forget about gravity.
 
Because a positive work is acted on in the system. Therefore, energy must've been added to it.
 
GnG.Vike13 said:
bump
Please, read the Forum rules regarding bumping.
 
Have you looked at the links at the bottom of this web page. This problem has been addressed many times, sometimes quite well.
 
GnG.Vike13 said:
Because a positive work is acted on in the system. Therefore, energy must've been added to it.
Once again I will remind you not to forget about gravity.

Also you may want to compare what happens when the wedge cannot move versus when it is free to move (as in this case).
 
Last edited:
I am taking gravity into account. The wedge moves left and the block moves right and down. There is a positive force to the left acting on the wedge and a positive force to the right acting on the block, along with gravity acting down. Therefore, all work done in this problem is positive. Since we area adding positive work into the system, Wnc= delta E
 
  • #10
There is no non-conservative work being done here. The increase in KE of the block and wedge is due to the work done by gravity.
 
  • #11
So, the work done by gravity is shraed between the two objects, correct?

But looking at it from a Newton's Laws perspective, how would you go about solving for the accelerations of each objects? Like, how does the acceleration of the wesdge relate to the acceleration of the block?
 
  • #12
GnG.Vike13 said:
So, the work done by gravity is shraed between the two objects, correct?
Right.

But looking at it from a Newton's Laws perspective, how would you go about solving for the accelerations of each objects? Like, how does the acceleration of the wesdge relate to the acceleration of the block?
Start by identifying the forces acting on each object and draw yourself a FBD of each. (You might have already done that.)

One constraint to apply is that the block maintains contact with the wedge. Call the acceleration of the wedge aw and the acceleration of the block with respect to the wedge a. (aw will be horizontal and a will be parallel to the wedge.)
 
  • #13
SammyS said:
Have you looked at the links at the bottom of this web page. This problem has been addressed many times, sometimes quite well.

Check these out !
 

Similar threads

  • · Replies 37 ·
2
Replies
37
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 43 ·
2
Replies
43
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
27
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K