Boundary conditions ##\vec{B}## and ##\vec{H}##

Click For Summary

Homework Help Overview

The discussion revolves around the boundary conditions for the magnetic fields ##\vec{B}## and ##\vec{H}## in the context of magnetostatics. Participants are exploring the implications of various mathematical expressions related to these fields.

Discussion Character

  • Conceptual clarification, Assumption checking, Mixed

Approaches and Questions Raised

  • Participants discuss the necessity of including curl equations in the boundary conditions and question the relevance of surface current treatments. There is also inquiry into the behavior of the magnetization vector ##M_{2 \, perpendicular}## and its implications for boundary conditions. One participant suggests the need for clarity on whether the conditions should be applied on-axis or across the entire surface.

Discussion Status

The conversation is ongoing, with participants offering insights and raising questions about the boundary conditions. Some guidance has been provided regarding the use of surface current models, and there is acknowledgment of multiple approaches to the problem.

Contextual Notes

There are indications of potential ambiguity in the problem statement regarding the specific conditions required, as well as the context in which the boundary conditions should be applied.

happyparticle
Messages
490
Reaction score
24
Homework Statement
Find boundary conditions ##\vec{B}## and ##\vec{H}## for a cylinder of radius a and length 4a and ##\vec{M} = M\hat{z}## on the axis of the cylinder
Relevant Equations
##\vec{\nabla} \cdot \vec{B} = 0##
##\vec{\nabla} \cdot \vec{H} = - \vec{\nabla} \cdot \vec{M}##
##\vec{\nabla} x \vec{B} = \mu_0 \vec{J}##
##\vec{\nabla} x \vec{H} = \mu_0 \vec{J}_f##
When asking for boundary conditions I'm wondering if this is enough in this situation to give
##\vec{\nabla} \cdot \vec{B} = 0 , B_{2\perp} - B_{1 \perp} = 0##
##\vec{\nabla} \cdot \vec{H} = - \vec{\nabla} \cdot \vec{M}, H_{2\perp} - H_{1 \perp} = - (M_{2\perp} - M_{1 \perp})##
##\vec{\nabla} \times \vec{B} = \mu_0 \vec{J}, B_{2\||} - B_{1 \||} = \mu_0 \vec{K} \times \hat{n}##
##\vec{\nabla} \times \vec{H} = \mu_0 \vec{J}_f , H_{2 \||} - H_{1 \||} = \vec{K}_f \times \hat{n}##
 
Physics news on Phys.org
It probably isn't necessary to include anything about the curls of the vectors, because that is a surface current type treatment that is completely separate from the pole model of magnetostatics. Meanwhile, what do you know about ## M_{2 \, perpendicular} ## ? =if it is outside of the material? For the ## M_{in \, perpendicular} ##, it is ## -M ## on the left endface, and ## +M ## on the right endface.

Edit: Scratch part of that=I think they may be looking for boundary conditions everywhere on the surface, (they aren't completely clear here=do they want just the on-axis conditions? ), and it may be useful to employ the surface current model to get the conditions for the parallel components.

It may be worth mentioning that this problem has two very standard ways of solving it, and Legendre's method with boundary conditions are not needed to solve it. See https://www.physicsforums.com/threads/a-magnetostatics-problem-of-interest-2.971045/
 
Last edited:
  • Like
Likes   Reactions: happyparticle
a follow-on: It still needs a little work, but let's get started using ## \nabla \times \vec{H}=\vec{J}_{free}=0 ##. Using Stokes theorem on this, what can you say about the parallel components of ## \vec{H} ## anywhere on the entire surface, i.e. ## H_{out \, parallel} ## and ## H_{in \, parallel} ##?
 
Finally find it, thank you.
 
  • Like
Likes   Reactions: Charles Link

Similar threads

  • · Replies 78 ·
3
Replies
78
Views
7K
Replies
26
Views
2K
Replies
2
Views
1K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
12
Views
2K
  • · Replies 11 ·
Replies
11
Views
1K
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K