 #1
happyparticle
 373
 19
 Homework Statement:
 Find boundary conditions ##\vec{B}## and ##\vec{H}## for a cylinder of radius a and length 4a and ##\vec{M} = M\hat{z}## on the axis of the cylinder
 Relevant Equations:

##\vec{\nabla} \cdot \vec{B} = 0##
##\vec{\nabla} \cdot \vec{H} =  \vec{\nabla} \cdot \vec{M}##
##\vec{\nabla} x \vec{B} = \mu_0 \vec{J}##
##\vec{\nabla} x \vec{H} = \mu_0 \vec{J}_f##
When asking for boundary conditions I'm wondering if this is enough in this situation to give
##\vec{\nabla} \cdot \vec{B} = 0 , B_{2\perp}  B_{1 \perp} = 0##
##\vec{\nabla} \cdot \vec{H} =  \vec{\nabla} \cdot \vec{M}, H_{2\perp}  H_{1 \perp} =  (M_{2\perp}  M_{1 \perp})##
##\vec{\nabla} \times \vec{B} = \mu_0 \vec{J}, B_{2\}  B_{1 \} = \mu_0 \vec{K} \times \hat{n}##
##\vec{\nabla} \times \vec{H} = \mu_0 \vec{J}_f , H_{2 \}  H_{1 \} = \vec{K}_f \times \hat{n}##
##\vec{\nabla} \cdot \vec{B} = 0 , B_{2\perp}  B_{1 \perp} = 0##
##\vec{\nabla} \cdot \vec{H} =  \vec{\nabla} \cdot \vec{M}, H_{2\perp}  H_{1 \perp} =  (M_{2\perp}  M_{1 \perp})##
##\vec{\nabla} \times \vec{B} = \mu_0 \vec{J}, B_{2\}  B_{1 \} = \mu_0 \vec{K} \times \hat{n}##
##\vec{\nabla} \times \vec{H} = \mu_0 \vec{J}_f , H_{2 \}  H_{1 \} = \vec{K}_f \times \hat{n}##