Boundary value problem for non-conducting surface

AI Thread Summary
The discussion centers on the challenges of solving boundary value problems for non-conducting surfaces in electric fields, contrasting them with the more straightforward approach for conducting surfaces using the method of images. The original poster encountered difficulties in finding a definitive solution for non-conducting surfaces, such as wooden plates, despite Green's theorem providing theoretical groundwork. They later discovered a method to analyze the effects of dielectric materials on electric fields, noting that the process is more complex than for conductive surfaces. Recommendations for further reading include a specific paper detailing the derivation and Harrington's Moment Method textbook for numerical solutions. Overall, numerical calculations are suggested as the most viable approach for these problems.
gaganaut
Messages
20
Reaction score
0
I have dealt quite a lot with the boundary value electrostatics problem with a plane or spherical conducting surface in an electric field due to a single electric charge or dipole. This can be conveniently done using the method of images. Method of images simplifies a lot of things. Jackson's book has a lot of material on this.

But I have never come across anything like that for non-conducting surfaces, like a wooden plate in an electric field or so. Green's theorem gives the theory for this, but there appears to be no definite solution for this problem. I need to solve this problem for some research, but have hit a major roadblock.

Is this problem of a non-conducting plane surface in an electric field even solvable using a method of images -like formulation? Can some subtle changes in the conducting plane counterpart be made to achieve this particular solution? Can someone direct me to a book or a paper or class notes etc. that solves this problem?

Thanks
 
Physics news on Phys.org
Well never mind. I found a way to find the effect of a dielectric or non-conductive wall on an electric field. It is slightly more involved than its conductive counterpart. Here is a paper that does this derivation http://iopscience.iop.org/0143-0807/21/6/305

It is sort of the like the method of images.
 
I would take a look at Harrington's Moment Method textbook. The method of moments can provide numerical solutions for these kinds of problems. There are of course other methods but in general I think your best bet is to do some form of numerical calculation.
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Back
Top