Boundary value problem for non-conducting surface

AI Thread Summary
The discussion centers on the challenges of solving boundary value problems for non-conducting surfaces in electric fields, contrasting them with the more straightforward approach for conducting surfaces using the method of images. The original poster encountered difficulties in finding a definitive solution for non-conducting surfaces, such as wooden plates, despite Green's theorem providing theoretical groundwork. They later discovered a method to analyze the effects of dielectric materials on electric fields, noting that the process is more complex than for conductive surfaces. Recommendations for further reading include a specific paper detailing the derivation and Harrington's Moment Method textbook for numerical solutions. Overall, numerical calculations are suggested as the most viable approach for these problems.
gaganaut
Messages
20
Reaction score
0
I have dealt quite a lot with the boundary value electrostatics problem with a plane or spherical conducting surface in an electric field due to a single electric charge or dipole. This can be conveniently done using the method of images. Method of images simplifies a lot of things. Jackson's book has a lot of material on this.

But I have never come across anything like that for non-conducting surfaces, like a wooden plate in an electric field or so. Green's theorem gives the theory for this, but there appears to be no definite solution for this problem. I need to solve this problem for some research, but have hit a major roadblock.

Is this problem of a non-conducting plane surface in an electric field even solvable using a method of images -like formulation? Can some subtle changes in the conducting plane counterpart be made to achieve this particular solution? Can someone direct me to a book or a paper or class notes etc. that solves this problem?

Thanks
 
Physics news on Phys.org
Well never mind. I found a way to find the effect of a dielectric or non-conductive wall on an electric field. It is slightly more involved than its conductive counterpart. Here is a paper that does this derivation http://iopscience.iop.org/0143-0807/21/6/305

It is sort of the like the method of images.
 
I would take a look at Harrington's Moment Method textbook. The method of moments can provide numerical solutions for these kinds of problems. There are of course other methods but in general I think your best bet is to do some form of numerical calculation.
 
Thread 'Gauss' law seems to imply instantaneous electric field propagation'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Maxwell’s equations imply the following wave equation for the electric field $$\nabla^2\mathbf{E}-\frac{1}{c^2}\frac{\partial^2\mathbf{E}}{\partial t^2} = \frac{1}{\varepsilon_0}\nabla\rho+\mu_0\frac{\partial\mathbf J}{\partial t}.\tag{1}$$ I wonder if eqn.##(1)## can be split into the following transverse part $$\nabla^2\mathbf{E}_T-\frac{1}{c^2}\frac{\partial^2\mathbf{E}_T}{\partial t^2} = \mu_0\frac{\partial\mathbf{J}_T}{\partial t}\tag{2}$$ and longitudinal part...
Thread 'Recovering Hamilton's Equations from Poisson brackets'
The issue : Let me start by copying and pasting the relevant passage from the text, thanks to modern day methods of computing. The trouble is, in equation (4.79), it completely ignores the partial derivative of ##q_i## with respect to time, i.e. it puts ##\partial q_i/\partial t=0##. But ##q_i## is a dynamical variable of ##t##, or ##q_i(t)##. In the derivation of Hamilton's equations from the Hamiltonian, viz. ##H = p_i \dot q_i-L##, nowhere did we assume that ##\partial q_i/\partial...
Back
Top