MHB Build an expression for the remaining area & show that....

Click For Summary
The problem involves calculating the area of a rectangular glass sheet after removing an isosceles triangle. The remaining area of the sheet is given as 5 cm², leading to the equation x(x+2) = 10 when equating the area of the rectangle minus the triangle. After simplifying, the expression becomes x² + 2x - 10 = 0. The calculations confirm that the expression for the remaining area is correct. The discussion focuses on deriving the quadratic equation from the area calculations.
mathlearn
Messages
331
Reaction score
0
Data

From the rectangular glass sheet ABCD the isosceles triangular part ADE is cut away (See figure)

The length of CE is 1m.

View attachment 5978

Problem

i. Take the length of DE as x meters, write an expression in terms of x , for the area of the remaining part of the sheet.

The area of the remaining part ABCE is $5cm^2$

ii.Show that $x^2+2x-10=0$ Workings:

Area of the remaining part = area of the rectangle - area of the isosceles triangle = $ [(x+1) x ]- \frac{1}{2} x^2 = x^2 + x- \frac{1}{2} x^2 $

Where do I need help

I think my expression for the remaining area is correct but how can i show that it is
$x^2+2x-10=0$ when the area of the remaining part is $5cm^2$
 

Attachments

  • figure.png
    figure.png
    2.2 KB · Views: 111
Last edited:
Mathematics news on Phys.org
Let's first treat $ABCE$ as a trapezoid, hence:

$$A=\frac{h}{2}(B+b)=\frac{x}{2}((x+1)+1)=\frac{x}{2}(x+2)$$

Now, let's treat is as a rectangle less the right isosceles triangle:

$$A=x(x+1)-\frac{1}{2}x^2=\frac{x}{2}(2x+2-x)=\frac{x}{2}(x+2)$$

Now, if we equate this area to 5 (assuming all measures are in cm), we obtain:

$$\frac{x}{2}(x+2)=5$$

Multiply through by 2:

$$x(x+2)=10$$

Distribute on the left:

$$x^2+2x=10$$

Subtract through by 10:

$$x^2+2x-10=0$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
1K
  • · Replies 21 ·
Replies
21
Views
4K
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
1K