MHB Build an expression for the remaining area & show that....

AI Thread Summary
The problem involves calculating the area of a rectangular glass sheet after removing an isosceles triangle. The remaining area of the sheet is given as 5 cm², leading to the equation x(x+2) = 10 when equating the area of the rectangle minus the triangle. After simplifying, the expression becomes x² + 2x - 10 = 0. The calculations confirm that the expression for the remaining area is correct. The discussion focuses on deriving the quadratic equation from the area calculations.
mathlearn
Messages
331
Reaction score
0
Data

From the rectangular glass sheet ABCD the isosceles triangular part ADE is cut away (See figure)

The length of CE is 1m.

View attachment 5978

Problem

i. Take the length of DE as x meters, write an expression in terms of x , for the area of the remaining part of the sheet.

The area of the remaining part ABCE is $5cm^2$

ii.Show that $x^2+2x-10=0$ Workings:

Area of the remaining part = area of the rectangle - area of the isosceles triangle = $ [(x+1) x ]- \frac{1}{2} x^2 = x^2 + x- \frac{1}{2} x^2 $

Where do I need help

I think my expression for the remaining area is correct but how can i show that it is
$x^2+2x-10=0$ when the area of the remaining part is $5cm^2$
 

Attachments

  • figure.png
    figure.png
    2.2 KB · Views: 97
Last edited:
Mathematics news on Phys.org
Let's first treat $ABCE$ as a trapezoid, hence:

$$A=\frac{h}{2}(B+b)=\frac{x}{2}((x+1)+1)=\frac{x}{2}(x+2)$$

Now, let's treat is as a rectangle less the right isosceles triangle:

$$A=x(x+1)-\frac{1}{2}x^2=\frac{x}{2}(2x+2-x)=\frac{x}{2}(x+2)$$

Now, if we equate this area to 5 (assuming all measures are in cm), we obtain:

$$\frac{x}{2}(x+2)=5$$

Multiply through by 2:

$$x(x+2)=10$$

Distribute on the left:

$$x^2+2x=10$$

Subtract through by 10:

$$x^2+2x-10=0$$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top