A Calculate curl of e_φ: Non-Zero Vector

  • Thread starter Thread starter LagrangeEuler
  • Start date Start date
  • Tags Tags
    Curl
Click For Summary
The curl of the unit vector \(\vec{e}_{\varphi}\) in cylindrical coordinates is not zero due to its dependence on the angular coordinate \(\varphi\). To calculate it, the formula \(\nabla \times \mathbf{e}_\varphi = \mathbf{e}_r \times \frac{\partial \mathbf{e}_\varphi}{\partial r} + \frac{1}{r}\mathbf{e}_\varphi \times \frac{\partial \mathbf{e}_\varphi}{\partial \varphi} + \mathbf{e}_z \times \frac{\partial \mathbf{e}_\varphi}{\partial z}\) is used. The key point is that \(\frac{\partial \mathbf{e}_\varphi}{\partial \varphi} = -\mathbf{e}_r\), which contributes to the non-zero result. This calculation highlights the importance of considering the variations of the unit vectors in cylindrical coordinates. Understanding this concept is crucial for applications in vector calculus and physics.
LagrangeEuler
Messages
711
Reaction score
22
Why
curl(\vec{e}_{\varphi}) is not zero vector? And how to calculate this. Vector ##\vec{e}_{\varphi}## is unit vector in cylindrical coordinates.
 
Physics news on Phys.org
Use <br /> \nabla \times \mathbf{e}_\varphi= \mathbf{e}_r \times \frac{\partial \mathbf{e}_\varphi}{\partial r} <br /> + \frac1r\mathbf{e}_\varphi \times \frac{\partial \mathbf{e}_\varphi}{\partial \varphi} <br /> + \mathbf{e}_z \times \frac{\partial \mathbf{e}_\varphi}{\partial z} and remember that <br /> \frac{\partial \mathbf{e}_\varphi}{\partial \varphi} = -\mathbf{e}_r.
 

Similar threads

Replies
11
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K