Calculate Deutron Mass Given Binding Energy

Click For Summary
The discussion focuses on calculating the mass of the deuteron using its binding energy of 2.2 MeV. The initial calculation incorrectly divides the binding energy by c^2, leading to an incorrect mass of 1877.9 MeV/c^2. The correct approach is to recognize that the binding energy should be treated as mass equivalent, resulting in 2.2 MeV/c^2. This adjustment aligns the units, allowing for proper addition with the masses of the proton and neutron. The final mass of the deuteron should be closer to 1875.7 MeV/c^2, reflecting the correct application of binding energy in the calculation.
basenne
Messages
20
Reaction score
0

Homework Statement


The deuteron is a bound state between a proton and a neutron (and the nucleus of the H2 isotope).

The binding energy of the deuteron is 2.2MeV. What is the mass of the deuteron?


Homework Equations



Mp = 938.3 MeV/c^2
Mn = 939.6 MeV/c^2

The Attempt at a Solution



Md = 938.3 + 939.6 - 2.2/c^2
= 1877.9 MeV


I tried to look for that number online, but I've only found numbers closer to 1875.7 MeV/c^2, which suggests to me that the binding energy changes the mass more than I found it to.

Where am I going wrong? Should I not be dividing the binding energy by c^2? Thanks for any help!
 
Physics news on Phys.org
basenne said:
Md = 938.3 + 939.6 - 2.2/c^2
= 1877.9 MeV

Recheck this calculation.

[Note: The c^2 should not be dividing the 2.2. The c^2 appears in the units]
 
Can you explain to me how I can add quantities with differing units?

If I don't divide 2.2 by c^2, don't I end up with

MeV/c^2 + MeV/c^2 + MeV?

I was under the impression that you can't add differing units. Or do I have a fundamental misunderstanding somewhere?

Thanks, again!
 
The binding energy is 2.2 Mev. The mass equivalent of that is m = E/c2 = (2.2 Mev)/c2 = 2.2 Mev/c2.

This now has the same units (Mev/c2) as you are using for the proton and neutron.
 
  • Like
Likes 1 person
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 10 ·
Replies
10
Views
4K
  • · Replies 54 ·
2
Replies
54
Views
11K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
13
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 12 ·
Replies
12
Views
2K
Replies
3
Views
1K