Calculate the angular momentum of this particle in rotational motion

Click For Summary
The discussion focuses on calculating the angular momentum of a particle in rotational motion, emphasizing the need to use the vector cross product rather than regular multiplication. The correct formula for angular momentum is given as L = p × r, highlighting the importance of understanding vector operations. A participant points out that the initial multiplication presented is not a proper cross product, which only exists in three dimensions. The conversation also touches on the anti-symmetry property of the cross product and clarifies misconceptions about two-dimensional vector multiplication. Overall, the thread underscores the significance of correctly applying vector mathematics in physics.
YanZhen
Messages
10
Reaction score
0
Homework Statement
The mass of the particle is m,the equation of motion is r=acosωti+bsinωtj.a and b are constant.Calculate the angular momentum of a particle at any time.
Relevant Equations
L=P*r=m*v*r
v=dr/dt
i,j,k arevector
I know L=P*r=m*v*r=m(acosωti+bsinωtj)*(-aωsinωti+bωcosωtj)=mabw((cos^2)ωt+(sin^2)ωt)k=mabωk.
but why m(acosωti+bsinωtj)*(-aωsinωti+bωcosωtj)=mabw((cos^2)ωt+(sin^2)ωt)k.I need some detail.
please help me.
 
Physics news on Phys.org
You should not be using regular multiplication to multiply vectors, you need to use the vector valued cross product to define the angular momentum:
$$
\vec L = \vec p \times \vec r
$$
where
$$
\hat i \times \hat j = \hat k, \quad \hat j \times \hat k = \hat i, \quad \hat k \times \hat i = \hat j
$$
and furthermore you have anti-symmetry so ##\vec u \times \vec v = - \vec v \times \vec u## for any vectors ##\vec u## and ##\vec v##.
 
IIRC $$\vec L\equiv \vec r \times\vec p$$ :wink:
 
BvU said:
IIRC $$\vec L\equiv \vec r \times\vec p$$ :wink:
Too busy arguing about the need to use the cross product to care about getting the right definition I suppose ... 🤷‍♂️
 
  • Haha
Likes berkeman and BvU
Orodruin said:
You should not be using regular multiplication to multiply vectors, you need to use the vector valued cross product to define the angular momentum:
$$
\vec L = \vec p \times \vec r
$$
where
$$
\hat i \times \hat j = \hat k, \quad \hat j \times \hat k = \hat i, \quad \hat k \times \hat i = \hat j
$$
and furthermore you have anti-symmetry so ##\vec u \times \vec v = - \vec v \times \vec u## for any vectors ##\vec u## and ##\vec v##.
wow,thanks for your wonderful answer,it solved my question.and it also requires a point of knowlege about vectors.(x1,y1)X(x2,y2)=x1y2-y1x2
 
YanZhen said:
(x1,y1)X(x2,y2)=x1y2-y1x2
Careful. This is not the cross product. It is a component (the third) of the cross product between two vectors that only have i and j components. The cross product as such does not exist in two dimensions (although there are generalisations of it that do - among them the wedge product, which would look something like what you wrote but is generally too advanced for basic introduction to vectors and their application). The general form of the cross product (in three dimensions) would read
$$
(x_1,y_1,z_1) \times (x_2, y_2, z_2) = (y_1 z_2 - y_2 z_1, z_1 x_2 - z_2 x_1, x_1 y_2 - x_2 y_1)
$$
 
Thread 'Chain falling out of a horizontal tube onto a table'
My attempt: Initial total M.E = PE of hanging part + PE of part of chain in the tube. I've considered the table as to be at zero of PE. PE of hanging part = ##\frac{1}{2} \frac{m}{l}gh^{2}##. PE of part in the tube = ##\frac{m}{l}(l - h)gh##. Final ME = ##\frac{1}{2}\frac{m}{l}gh^{2}## + ##\frac{1}{2}\frac{m}{l}hv^{2}##. Since Initial ME = Final ME. Therefore, ##\frac{1}{2}\frac{m}{l}hv^{2}## = ##\frac{m}{l}(l-h)gh##. Solving this gives: ## v = \sqrt{2g(l-h)}##. But the answer in the book...

Similar threads

Replies
5
Views
1K
  • · Replies 17 ·
Replies
17
Views
601
Replies
67
Views
4K
Replies
5
Views
1K
Replies
3
Views
1K
  • · Replies 9 ·
Replies
9
Views
449
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
335
Views
14K
  • · Replies 3 ·
Replies
3
Views
986