Calculate the angular momentum of this particle in rotational motion

Click For Summary
SUMMARY

The discussion focuses on calculating the angular momentum of a particle in rotational motion using vector mathematics. The correct formula for angular momentum is established as ℓ = p × r, emphasizing the necessity of the vector cross product rather than regular multiplication. Participants clarify the anti-symmetry property of the cross product and correct misconceptions about two-dimensional vector operations. The final consensus highlights the importance of understanding the three-dimensional cross product for accurate calculations.

PREREQUISITES
  • Understanding of vector mathematics, specifically the vector cross product
  • Familiarity with angular momentum concepts in physics
  • Knowledge of rotational motion and its mathematical representation
  • Basic understanding of three-dimensional coordinate systems
NEXT STEPS
  • Study the properties of the vector cross product in three dimensions
  • Learn about angular momentum in various physical systems
  • Explore the generalization of the cross product, such as the wedge product
  • Practice calculating angular momentum using different vector configurations
USEFUL FOR

Physics students, educators, and anyone interested in mastering vector calculus and its applications in rotational dynamics.

YanZhen
Messages
10
Reaction score
0
Homework Statement
The mass of the particle is m,the equation of motion is r=acosωti+bsinωtj.a and b are constant.Calculate the angular momentum of a particle at any time.
Relevant Equations
L=P*r=m*v*r
v=dr/dt
i,j,k arevector
I know L=P*r=m*v*r=m(acosωti+bsinωtj)*(-aωsinωti+bωcosωtj)=mabw((cos^2)ωt+(sin^2)ωt)k=mabωk.
but why m(acosωti+bsinωtj)*(-aωsinωti+bωcosωtj)=mabw((cos^2)ωt+(sin^2)ωt)k.I need some detail.
please help me.
 
Physics news on Phys.org
You should not be using regular multiplication to multiply vectors, you need to use the vector valued cross product to define the angular momentum:
$$
\vec L = \vec p \times \vec r
$$
where
$$
\hat i \times \hat j = \hat k, \quad \hat j \times \hat k = \hat i, \quad \hat k \times \hat i = \hat j
$$
and furthermore you have anti-symmetry so ##\vec u \times \vec v = - \vec v \times \vec u## for any vectors ##\vec u## and ##\vec v##.
 
IIRC $$\vec L\equiv \vec r \times\vec p$$ :wink:
 
BvU said:
IIRC $$\vec L\equiv \vec r \times\vec p$$ :wink:
Too busy arguing about the need to use the cross product to care about getting the right definition I suppose ... 🤷‍♂️
 
  • Haha
Likes   Reactions: berkeman and BvU
Orodruin said:
You should not be using regular multiplication to multiply vectors, you need to use the vector valued cross product to define the angular momentum:
$$
\vec L = \vec p \times \vec r
$$
where
$$
\hat i \times \hat j = \hat k, \quad \hat j \times \hat k = \hat i, \quad \hat k \times \hat i = \hat j
$$
and furthermore you have anti-symmetry so ##\vec u \times \vec v = - \vec v \times \vec u## for any vectors ##\vec u## and ##\vec v##.
wow,thanks for your wonderful answer,it solved my question.and it also requires a point of knowledge about vectors.(x1,y1)X(x2,y2)=x1y2-y1x2
 
YanZhen said:
(x1,y1)X(x2,y2)=x1y2-y1x2
Careful. This is not the cross product. It is a component (the third) of the cross product between two vectors that only have i and j components. The cross product as such does not exist in two dimensions (although there are generalisations of it that do - among them the wedge product, which would look something like what you wrote but is generally too advanced for basic introduction to vectors and their application). The general form of the cross product (in three dimensions) would read
$$
(x_1,y_1,z_1) \times (x_2, y_2, z_2) = (y_1 z_2 - y_2 z_1, z_1 x_2 - z_2 x_1, x_1 y_2 - x_2 y_1)
$$
 
  • Like
Likes   Reactions: YanZhen

Similar threads

Replies
5
Views
1K
  • · Replies 17 ·
Replies
17
Views
998
Replies
67
Views
4K
Replies
5
Views
1K
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
907
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
335
Views
16K