Calculate the Energy Levels of an Electron in a Finite Potential Well

Click For Summary
SUMMARY

This discussion focuses on calculating the energy levels of an electron in a finite potential well using the time-independent Schrödinger equation. The wave function is defined over three domains, leading to characteristic polynomials that yield solutions for both even and odd parity states. The solutions are determined numerically, revealing that there is always at least one even parity solution for any potential well depth \( V_0 < \frac{(\hbar \pi)^2}{8mL^2} \). The computed energy levels for specific parameters, such as \( L = 1 \text{ nm} \) and \( V_0 = 1 \text{ eV} \), demonstrate that the ground state energy level for the finite well is lower than that of the infinite well.

PREREQUISITES
  • Understanding of the time-independent Schrödinger equation
  • Familiarity with quantum mechanics concepts such as wave functions and energy states
  • Knowledge of numerical methods for solving transcendental equations
  • Basic understanding of potential wells and quantum confinement
NEXT STEPS
  • Study the derivation and applications of the time-independent Schrödinger equation
  • Learn numerical methods for solving transcendental equations in quantum mechanics
  • Explore the implications of finite potential wells on quantum state energies
  • Investigate the differences between finite and infinite potential wells in quantum mechanics
USEFUL FOR

Physicists, quantum mechanics students, and researchers interested in quantum confinement and energy level calculations in potential wells.

docnet
Messages
796
Reaction score
486
Homework Statement
psb
Relevant Equations
psb
Screen Shot 2021-02-20 at 3.36.07 AM.png

Thank you for reading :bow:
Section 1
To find the energy states of the particle, we define the wave function over three discrete domains defined by the sets ##\left\{x<-L\right\}##, ##\left\{-L<x<L\right\}##, and ##\left\{L<x\right\}##. The time independent Schrodinder equation is
\begin{equation}\frac{d^2\psi}{dx^2}=\frac{2m}{\hbar^2}[V_(x)-|E|]\psi
\end{equation}
Outside of the well, setting ##V(x)=V_0## gives
\begin{equation}\frac{d^2\psi}{dx^2}=\frac{2m}{\hbar^2}[V_0-|E|]\psi
\end{equation}
The characteristic polynomial is
\begin{equation}\lambda^2-\frac{2m[V_0-|E|]}{\hbar^2}=0\end{equation} with the roots \begin{equation}
\lambda=\pm \sqrt{\frac{2m[V_0-|E|]}{\hbar^2}}\Rightarrow \pm \alpha\end{equation}
and the general solution is
\begin{equation}
\psi=C_1e^{\alpha x}+C_2e^{-\alpha x}
\end{equation}
Inside of the finite well, setting ##V(x)=0## gives
\begin{equation}
\frac{d^2\psi}{dx^2}=\frac{-2m}{\hbar^2}|E|\psi
\end{equation}
which has the following characteristic polynomial
\begin{equation}
\lambda^2+\frac{2m}{\hbar^2}|E|=0
\end{equation}
with the roots
\begin{equation}
\lambda=\pm i\sqrt{\frac{2m}{\hbar^2}|E|}\Rightarrow\pm i\sqrt{q}
\end{equation}
and the general solution is
\begin{equation}
\psi=C_1e^{iqx}+C_2e^{-iqx}\Rightarrow \psi= C_3cos(qx)+iC_4sin(qx)
\end{equation}
The real and imaginary parts of a complex valued solution form a fundamental set of solutions of the second order linear ODE, giving
\begin{equation}
\psi=A_1cos(qx)+A_2sin(qx)
\end{equation}
The even parity wave functions are

\begin{equation}
\psi=Ce^{\alpha x}|_{\left\{x<-L\right\}}
\end{equation}
\begin{equation}
\psi=Acos(qx)|_{\left\{|x|<L\right\}}
\end{equation}
\begin{equation}
\psi=Ce^{-\alpha x}|_{\left\{L<x\right\}}
\end{equation}
the odd parity wave functions are
\begin{equation}
\psi=-Ce^{\alpha x}|_{\left\{x<-L\right\}}
\end{equation}
\begin{equation}
\psi=Asin(qx)|_{\left\{|x|<L\right\}}
\end{equation}
\begin{equation}
\psi=Ce^{-\alpha x}|_{\left\{L<x\right\}}
\end{equation}
Section 2
For the even solution, we require ##\psi \in C^1(\pm L)\Rightarrow \psi## is once continuously differentiable at ##x=\pm L##
\begin{equation}
\psi_{in}(\pm L)= \psi_{out}(\pm L)\Rightarrow Acos(qL)=Ce^{-\alpha L}
\end{equation}
\begin{equation}
\psi'_{in}(\pm L)= \psi'_{out}(\pm L)\Rightarrow Aqsin(qL)=\alpha Ce^{-\alpha L}
\end{equation}
we divide equation (18) by (17) and do a change of variables using $$x=qL$$ and $$r^2=\frac{2mV_0L^2}{\hbar^2}$$ The even solutions are given implicitly by
\begin{equation}
xtan(x)=\sqrt{r^2-x^2}
\end{equation}
For the odd functions, we again require that ##\psi \in C^1(\pm L)##
\begin{equation}
\psi_{in}(\pm L)= \psi_{out}(\pm L)\Rightarrow Asin(qL)=Ce^{-\alpha L}
\end{equation}
\begin{equation}
\psi'_{in}(\pm L)= \psi'_{out}(\pm L)\Rightarrow Aqcos(qL)=-\alpha Ce^{-\alpha L}
\end{equation}
and divide equation (20) by (21). Following a change of variables for ##x## and ##r^2## we have
\begin{equation}
-x cot(x)=\sqrt{r^2-x^2}
\end{equation}
Section 3
(19) and (22) are transcendental equations whose solutions are obtained using numerical approximations. The even solutions are given by
\begin{equation}
\{ \{y=xtan(x)\}\cap \{y=\sqrt{r^2-x^2}\}|x\in [0,\infty)\}
\end{equation}
and the odd solutions are given by
\begin{equation}
\{\{y=-xcot(x)\}\cap\{y=\sqrt{r^2-x^2}\}|x\in [0,\infty)\}
\end{equation}
It is worth mentioning the solutions exist in the domain \begin{equation}
\{(x,y)\in {\rm I\!R} \times[0,\infty)\}
\end{equation}
and the solution space is symmetric in the ##x## and the ##-x##. For wells with
\begin{equation}
V_0<\frac{(\hbar \pi)^2}{8mL^2}\Rightarrow L<\frac{\hbar \pi}{\sqrt{8mV_0}}\Rightarrow r<\frac{\pi}{2}
\end{equation}
we use the fact ##r=\frac{\pi}{2}## is in the exceptional set defined by $$\varepsilon(f)=\Big\{\alpha\in\bar{\mathbb{Q}}:f(\alpha)\in\bar{\mathbb{Q}}\Big\}$$ where ##Q## denotes the field of rational numbers.
$$0=-\Big(\frac{\pi}{2}\Big)cot\Big(\frac{\pi}{2}\Big)=\sqrt{\Big(\frac{\pi}{2}\Big)^2-x^2}$$
It follows that
\begin{equation}
\{\{y=-xcot(x)\}\cap\{y=\sqrt{r^2-x^2}\}|(x,r)\in [0,\infty)\times{[0,\frac{\pi}{2}})\}=\{\emptyset\}
\end{equation}
so there are no odd parity energy states. In the meanwhile, we find
\begin{equation}
\{ \{y=xtan(x)\}\cap \{y=\sqrt{r^2-x^2}\}|(x,r)\in [0,\infty)\times[0,\infty)\}\neq\{\emptyset\}
\end{equation}
so there will always be an even parity solution for any ##V_o##. In particular, we find that ##\{y=xtan(x)\}\cap \{y=\sqrt{r^2-x^2}\}\}## where ##r\in[0,\frac{\pi}{2})## is the graph of ##y=xtan(x)## in the region ##\{|x|\leq.934\}##. So, there exists only one energy state of even parity for
$$V_0<\frac{(\hbar \pi)^2}{8mL^2}$$
Section 4
Setting ##L=1nm## and ##V_0=1eV##, we compute
$$
r^2=\frac{2mV_0L^2}{\hbar^2}=\frac{2(9.1\times10^{-31}kg)(1.6\times10^{-19}J)(10^{-9})^2m}{(1.054\times10^{-34}Js)^2}\approx26.2729J
$$
we plot
\begin{equation}
y=xtan(x)
\end{equation}
\begin{equation}
y=-xcot(x)
\end{equation}
\begin{equation}
y=\sqrt{26.2729-x^2}
\end{equation}
and find
$$x_{even}=\{1.312, 3.86\}$$
and
$$x_{odd}=\{2.608, 4.964\}$$
We compute the energy using
\begin{equation}
E=\frac{x^2\hbar^2}{2mL^2}
\end{equation}
giving
$$E_{1even}\approx1.05\times10^{-20}J$$
$$E_{2even}\approx9.09\times10^{-20}J$$
and
$$E_{1odd}\approx4.15\times10^{-20}J$$
$$E_{2odd}\approx1.50\times10^{-19}J$$
The expression for the energy levels of the infinite well is
\begin{equation}
E_n=\frac{n^2\pi^2\hbar^2}{8mL^2}
\end{equation}
giving
$$E_1\approx1.50\times10^{-20}J$$
$$E_2\approx6.02\times10^{-20}J$$
so the ground state energy level for the finite well is lower.
 
Last edited by a moderator:
Physics news on Phys.org
Looks good overall.

Eq 27 and 28: Normally ##\emptyset## is already the empty set. What you wrote is a non-empty set containing the empty set as element.

Section 4:
r is dimensionless, not in J

eV would be a more natural unit for the energy levels, especially as the potential is given in eV as well.
 
  • Like
Likes   Reactions: docnet
mfb said:
Looks good overall.

Eq 27 and 28: Normally ##\emptyset## is already the empty set. What you wrote is a non-empty set containing the empty set as element.

Section 4:
r is dimensionless, not in J

eV would be a more natural unit for the energy levels, especially as the potential is given in eV as well.
Thank you! :bow: I see what I did there.
 
Some useful combinations to memorize are
\begin{align*}
hc &= 1240~{\rm nm\cdot eV} \\
\hbar c &= 197.3~{\rm nm\cdot eV~(or~MeV\cdot fm)} \\
mc^2 &= 511000~{\rm eV}
\end{align*} where ##m## is the mass of the electron.

Using these and strategically introducing factors of ##c##, you can avoid a lot of unit conversions. For example, you had
$$r^2 = \frac{2mV_0L^2}{\hbar^2} = \frac{2(mc^2)V_0 L^2}{(\hbar c)^2}
= \frac{2(511000~{\rm eV})(1.0~{\rm eV})(1.0~{\rm nm})^2}{(197.3~\rm{eV\cdot nm})^2} = 26$$
 
  • Like
Likes   Reactions: docnet
vela said:
Some useful combinations to memorize are
\begin{align*}
hc &= 1240~{\rm nm\cdot eV} \\
\hbar c &= 197.3~{\rm nm\cdot eV~(or~MeV\cdot fm)} \\
mc^2 &= 511000~{\rm eV}
\end{align*} where ##m## is the mass of the electron.

Using these and strategically introducing factors of ##c##, you can avoid a lot of unit conversions. For example, you had
$$r^2 = \frac{2mV_0L^2}{\hbar^2} = \frac{2(mc^2)V_0 L^2}{(\hbar c)^2}
= \frac{2(511000~{\rm eV})(1.0~{\rm eV})(1.0~{\rm nm})^2}{(197.3~\rm{eV\cdot nm})^2} = 26$$
Thank you sir 🐯 :bow:
 

Similar threads

Replies
7
Views
3K
  • · Replies 20 ·
Replies
20
Views
2K
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
29
Views
2K
Replies
16
Views
3K
Replies
1
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K