Calculate velocity of an oobject falling trhough a medium

AI Thread Summary
To calculate the velocity of a falling object through a medium while considering buoyancy and viscous drag, start with Newton's second law: m(dv/dt) = Fnet = mg - Drag - Buoyant force. The forces acting on the object include gravity pulling it downward and both viscous drag and buoyancy acting upward. The correct approach involves summing these forces to derive acceleration, which can then be integrated to find velocity. The resulting equation for velocity incorporates time and initial velocity, and if drag is velocity-dependent, the object will eventually reach terminal velocity. This method effectively accounts for the dynamics of the falling object in a medium.
SFB
Messages
35
Reaction score
0
How do I calculate for velocity of a falling object through any medium at any given time if I have to consider both buoyancy and viscous drag.


If I consider Newtons law , I assume that it would be something like

m(dv/dt)=Fnet =mg-Drag-Buoyant force


Am I supposed to get a dimensionless quantity while doing dimensional analysis for such a problem.Whats the name of that number.



Thanks
 
Physics news on Phys.org
Since you are looking for a velocity, you wouldn't end with a dimensionless number. It would need to be in meters/second (or whatever distance/time measure you are using).

To do problems like this, consider all the different forces and the directions they are acting in. Then, use the sum of the forces equals mass*acceleration to get acceleration, and from there you can derive velocity.

For your problem, gravity is the only force acting to pull the object downward. Both viscous drag and buoyancy are acting upward, against gravity. So, your equation is correct (assuming down as the positive direction).

ma = Fg - Fd - Fb

Fg = force of gravity = mg
Fd = viscous drag force
Fb = buoyant force

From that, solve for acceleration (a) and integrate to get an equation for velocity.

a = (Fg - Fd - Fb)/m
v = [(Fg - Fd - Fb)/m]*t + Vo

where t = time and Vo = initial velocity.

Hope that helps!
 
If the drag force Fd is velocity dependent (Stokes or turbulent drag), the falling velocity will reach a terminal velocity. See

http://en.wikipedia.org/wiki/Drag_(physics )

Bob S
 
Last edited by a moderator:
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Hello everyone, Consider the problem in which a car is told to travel at 30 km/h for L kilometers and then at 60 km/h for another L kilometers. Next, you are asked to determine the average speed. My question is: although we know that the average speed in this case is the harmonic mean of the two speeds, is it also possible to state that the average speed over this 2L-kilometer stretch can be obtained as a weighted average of the two speeds? Best regards, DaTario
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Back
Top