Calculate Wavelength of 6th Line in Balmer Series

Click For Summary
The discussion revolves around calculating the wavelength of the sixth line in the hydrogen Balmer series using the Rydberg formula. The user initially set up the calculation correctly but misunderstood the definition of the "sixth line," confusing it with the sixth quantum level. Clarification revealed that the sixth line refers to the sixth observed transition, which is from n=8 to n=2. The correct wavelength calculation, once the proper transition is identified, is crucial for accuracy. This highlights the importance of understanding terminology in physics problems.
JJK1503
Messages
12
Reaction score
0

Homework Statement



Compute to three significant figures the wavelength of the sixth line in the hydrogen Balmer series.

Homework Equations



1 / lambda = R * ( 1/ n_final^2 - 1 / n_initial^2 )
R = Rydberg constant = 10973731.57 m^-1
lambda = wavelength

The Attempt at a Solution



I set up the Balmer formula I listed above given the info in the problem

1 / lambda = (10973731.57 m^-1) * ( 1/ 2^2 - 1 / 6^2 ) = 1 / 2438607.015555 m^-1

so, lambda = 410.070 nm
or 4.10 x 10^-7 m using 3 sig figs as the question asks for.

Not sure what I am doing wrong. This seems right to me, but it is not.

Any help is appreciated.
 
Physics news on Phys.org
JJK1503 said:

Homework Statement



Compute to three significant figures the wavelength of the sixth line in the hydrogen Balmer series.

Homework Equations



1 / lambda = R * ( 1/ n_final^2 - 1 / n_initial^2 )
R = Rydberg constant = 10973731.57 m^-1
lambda = wavelength

The Attempt at a Solution



I set up the Balmer formula I listed above given the info in the problem

1 / lambda = (10973731.57 m^-1) * ( 1/ 2^2 - 1 / 6^2 ) = 1 / 2438607.015555 m^-1

so, lambda = 410.070 nm
or 4.10 x 10^-7 m using 3 sig figs as the question asks for.

Not sure what I am doing wrong. This seems right to me, but it is not.

Any help is appreciated.

The sixth line means the sixth observed line.

Here are the transisitons:
n_i --> n_f
3--> 2 (first line)
4--> 2 (second line)
5--> 2 (third line)
...
Which is the sixth line?
 
Quantum Defect said:
The sixth line means the sixth observed line.

Here are the transisitons:
n_i --> n_f
3--> 2 (first line)
4--> 2 (second line)
5--> 2 (third line)
...
Which is the sixth line?

And the hand meets the forehead...
It states the 6th line of the Balmer series not the sixth quantum level.
Thank you for your help, I had a feeling it was something simple.
 
JJK1503 said:
And the hand meets the forehead...
It states the 6th line of the Balmer series not the sixth quantum level.
Thank you for your help, I had a feeling it was something simple.

We have all done things like this. :wink:
 
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

Replies
3
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
9K
  • · Replies 4 ·
Replies
4
Views
4K
Replies
16
Views
3K
Replies
1
Views
5K