MHB Calculating $2\sqrt{2}$ to Infinity

  • Thread starter Thread starter maxkor
  • Start date Start date
  • Tags Tags
    Infinity
maxkor
Messages
79
Reaction score
0
Calculate $2\sqrt{2\sqrt[5]{2\sqrt[8]{2\sqrt[11]{2 \cdots}}}}$.
I know only that $...=2^{1+{1\over2}+{1\over10}+{1\over80}+{1\over880}+\ldots}$
 
Physics news on Phys.org
In order to answer that we will need to know exactly how the exponent are calculated. You have roots of 1, 2, 5, 8, 11. But what next? I don't see any obvious pattern.
 
14,17,...
 
Really? I saw that 2+ 3= 5, 5+ 3= 8, 8+ 3= 11 but 1 to 2 does not fit that.
 
If you want:
calculate $2\ \cdot \ \sqrt{2\sqrt[5]{2\sqrt[8]{2\sqrt[11]{2 \cdots}}}}$.
2 * "that sqrts"
 
So you need
[math]2 \sqrt{2} \sqrt{ \Pi _{n = 0}^{\infty} 2^{1/(5 + 3n)} }[/math]

I have no proof but Mathematica says this does not converge.

-Dan
 
No,
[math]2 \sqrt{2} \sqrt{ \Pi _{n = 0}^{\infty} 2^{1/(5 + 3n)} } \neq 2^{1+\frac12+\frac1{2\cdot5}+\frac1{2\cdot5\cdot8}+\frac1{2\cdot5\cdot8\cdot11}+\cdots}[/math]
 
Yes, I was reading that wrong.

Okay, I can't finish it but I can get it started.
[math]P = 2\sqrt{2\sqrt[5]{2\sqrt[8]{2\sqrt[11]{2 \cdots}}}}[/math]

[math]P = 2 \cdot 2^{1/2 + 1/2 \cdot 1/5 + 1/2 \cdot 1/5 \cdot 1/8 + 1/2 \cdot 1/5 \cdot 1/8 \cdot 1/11 + \text{ ...}}[/math]

[math]ln(P) = ln(2) + \dfrac{1}{2} ln(2) + \dfrac{1}{2} \cdot \dfrac{1}{5} ln(2) + \dfrac{1}{2} \cdot \dfrac{1}{5} \cdot \dfrac{1}{8} ln(2) + \dfrac{1}{2} \cdot \dfrac{1}{5} \cdot \dfrac{1}{8} \cdot \dfrac{1}{11} ln(2) + \text{ ...}[/math]

[math]ln(P) = ln(2) \left ( \dfrac{1}{2} + \dfrac{1}{2} \cdot \dfrac{1}{5} + \dfrac{1}{2} \cdot \dfrac{1}{5} \cdot \dfrac{1}{8} + \dfrac{1}{2} \cdot \dfrac{1}{5} \cdot \dfrac{1}{8} \cdot \dfrac{1}{11} + \text{ ...} \right )[/math]

So we have the form
[math]ln(P) = ln(2) \left ( \sum_{n = 0}^{ \infty } a_n \right )[/math]
where [math]a_n = \dfrac{ a_{n - 1} }{3n + 2}[/math], with [math]a_0 = \dfrac{1}{2}[/math]

The trouble is that the series is neither arithmetic nor geometric. The defining recurrence is [math](3n + 2)a_n - a_{n - 1} = 0[/math] and I have never solved one of these before. (I don't even know how to get Mathematica to solve it.) And the, once you get [math]a_n[/math] you still have to sum it.

This is a highly non-trivial problem for a specific value of n. There may be a way to make it simpler in the limit as n goes to infinity.

-Dan
 
Back
Top