Calculating Constant Volume Rate of Change

  • Thread starter Thread starter Stanc
  • Start date Start date
  • Tags Tags
    Calculus
Click For Summary
The discussion focuses on calculating the rate of change of width in a rectangular object to maintain a constant volume of 16,000 cm³ while the height increases at 12 cm/min. The user correctly sets up the volume equation and differentiates it, leading to a negative width change rate of -7.5 cm/min. There is a consensus that the approach is reasonable, although some participants suggest using clearer variable names for better understanding. The user expresses confusion about the need for the chain rule in their calculations. The thread emphasizes the importance of clarity in variable representation and confirms the correctness of the method used.
Stanc
Messages
60
Reaction score
0

Homework Statement


A rectangular object has a fixed length of 1m. The height is increasing by 12 cm/min. Find the rate that the width must change so that the volume remains constant at 16 000cm^3 when the height is 10 cm





The Attempt at a Solution



So here's what I tried:

The Volume= Lenth x Width x Height
V = x y z Since x is fixed at 100 , V= 100 y z
dV/dt = 100y dz/dt +100 z dy/dt = 0
z dy/dt = -ydz/dt
(10) (12) = - y dz/dt
When x= 100 and z= 10 and V=16000 , y = 16
dz/dt = - (10)(12)/y = - 120/16 = -7.5 cm/min


However, I don't even know if I am taking the right approach... Please give me assistance
 
Physics news on Phys.org
Stanc said:

Homework Statement


A rectangular object has a fixed length of 1m. The height is increasing by 12 cm/min. Find the rate that the width must change so that the volume remains constant at 16 000cm^3 when the height is 10 cm





The Attempt at a Solution



So here's what I tried:

The Volume= Lenth x Width x Height
V = x y z Since x is fixed at 100 , V= 100 y z
dV/dt = 100y dz/dt +100 z dy/dt = 0
z dy/dt = -ydz/dt
(10) (12) = - y dz/dt
When x= 100 and z= 10 and V=16000 , y = 16
dz/dt = - (10)(12)/y = - 120/16 = -7.5 cm/min


However, I don't even know if I am taking the right approach... Please give me assistance

Looks OK to me, but I didn't check that closely. It's reasonable to get a negative rate, since one dimension is increasing, and one is constant. It has to be true that the third dimension is decreasing, this you get a negative rate.

It would have been helpful to use variables that matched what they represent - h for height, and w for width. I have to do a bit of translation with y and z.
 
Mark44 said:
Looks OK to me, but I didn't check that closely. It's reasonable to get a negative rate, since one dimension is increasing, and one is constant. It has to be true that the third dimension is decreasing, this you get a negative rate.

It would have been helpful to use variables that matched what they represent - h for height, and w for width. I have to do a bit of translation with y and z.

Ok sorry about the representation thing but is my approach correct? I just don't understand why I didnt have to use the chain rule...
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
12
Views
2K
  • · Replies 40 ·
2
Replies
40
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K