Calculating Distance and Time for One-Dimensional Motion in Physics

  • Thread starter Thread starter hquang001
  • Start date Start date
  • Tags Tags
    Dimension Motion
AI Thread Summary
The discussion focuses on calculating distance and time for one-dimensional motion using physics equations. The user initially encounters a discrepancy in total distance, calculating 90 km instead of the expected 60 km due to misunderstanding the motion phases. After receiving advice to use a speed vs. time graph, they realize multiple maximum speed solutions are possible. Ultimately, they confirm that by recalculating all quantities, including distances for each segment, they can achieve the correct total distance of 60 km. The conversation emphasizes the importance of thorough checks and visual aids in solving motion problems.
hquang001
Messages
31
Reaction score
3
Homework Statement
A train which connects city A to C, leaves the station A at 10:06 AM. The train accelerates for 6 minutes with a constant rate before it reaches its top speed. Then it is travelling with constant speed. Then it reduces its speed with a constant rate of 600 km/h² before it reaches the station of city C (The value of the speed is 0km/h when it reaches the station C). The train should arrive at city C at 10:42 AM. The distance between A to C is 60km

a) What is the acceleration of the train in the beginning ?
b) What is the maximum speed of the train ?
Relevant Equations
X = Xo + Vot + 1/2 at²
V = Vo + at
V² - Vo² = 2aX
total time: t = 36 mins = 0.6h = t1 + t2
=> t2 = t - t1 = 0.6h - 0.1h = 0.5h

Vmax = a1 x t1
Vat C = Vmax + a2t2
substitute Vmax in Vat C we have : 0 = a1 x 0.1h + (-600 km/h²) x 0.5h => a1 = 3000km/h²
Vmax = a1 x t1 = 3000 x 0.1 = 300km/h

I check the result by:
x1 = ½ a1 t1² = ½ . (3000). (0.1²) = 15km
x = ½ a2t2² + vmaxt2 + x1 = ½ (-600).(0.5²) + (300).(0.5) + 15km = 90km

I don't know why the total distance when i check the result turn out to be 90km, while the questions states that AC is 60km
 
Physics news on Phys.org
hquang001 said:
(-600 km/h²) x 0.5h
It is not slowing down for half an hour. It spends some unstated time at constant speed.
 
@hquang001 If I were you, I'd draw a speed vs time graph, where the distance is the area under the graph. It's easy to get lost if you only use the SUVAT equations.
 
haruspex said:
It is not slowing down for half an hour. It spends some unstated time at constant speed.
This is the hint which i forgot to put in the question statement: It could be that you get more than one answer .

After considering your help and calculating again, i really got two possible maximum speed value like the hint stated 154751291_758301718455564_3019073286399381927_n.jpg
I want to ask how i can check if my results are correct in situation like this, or in general, one dimensional motion ?
Thank you for your help!
 
Last edited:
PeroK said:
@hquang001 If I were you, I'd draw a speed vs time graph, where the distance is the area under the graph. It's easy to get lost if you only use the SUVAT equations.
I have done it again and also include a simple graph

hquang001 said:
This is the hint which i forgot to put in the question statement: It could be that you get more than one answer .

After considering your help and calculating again, i really got two possible maximum speed value like the hint stated View attachment 278640
 
Have you checked your solutions? Do they both work out?
 
PeroK said:
Have you checked your solutions? Do they both work out?
Only one solution is possible
When i substitute V = 522.09 km/h to find t3,
t3 = 0.87h which will make t2 negative
 
hquang001 said:
Only one solution is possible
When i substitute V = 522.09 km/h to find t3,
t3 = 0.87h which will make t2 negative
Okay, so you have one good solution?
 
PeroK said:
Okay, so you have one good solution?
Yes, Vmax = 137.91 is possible
but i don't know if it's correct or not, i don't know how to check it
 
  • #10
hquang001 said:
Yes, Vmax = 137.91 is possible
but i don't know if it's correct or not, i don't know how to check it
You have to calculate the other quantities: initial acceleration; ##t_3##, ##t_2## and check you get the right time and distance for the journey. Tricky question!
 
  • #11
PeroK said:
You have to calculate the other quantities: initial acceleration; ##t_3##, ##t_2## and check you get the right time and distance for the journey. Tricky question!
Yes i have calculated all the quantities you mentioned, and find each distance x1,x2,x3 which add up 60km. So i think this should be correct. Thank you very much for your help
 
  • Like
Likes PeroK
Back
Top