Calculating Electric Field at Point P(0,0'03,0'04)

Click For Summary

Homework Help Overview

The discussion revolves around calculating the electric field at a specific point P(0, 0.03, 0.04) due to a sphere and a plane. Participants are exploring the contributions of these two sources to the total electric field and the vector nature of electric fields.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants discuss the direct summation of electric fields and question whether modulus should be used instead. There is also a focus on the directionality of the electric fields and the need to consider vector components for accurate calculations.

Discussion Status

There is an ongoing exploration of how to separate the components of the electric field due to the sphere. Some participants have suggested using vector diagrams and trigonometric functions to resolve the components, while others have pointed out the importance of understanding the vector nature of electric fields.

Contextual Notes

Participants are navigating the complexities of vector addition in electric fields and are referencing previous discussions for clarification. The conversation reflects a mix of attempts to apply theoretical knowledge and practical calculation strategies.

Guillem_dlc
Messages
188
Reaction score
17
Homework Statement
We have a sphere of radius ##R=6\, \textrm{cm}## charged with a volume density of charge ##\rho =10\, \mu \textrm{C}/\textrm{m}^3## centered at the origin of coordinates. An infinite plane located in the ##z=0##-plane will be charged with a surface charge density ##\sigma =0,2\, \mu \textrm{C}/\textrm{m}^2##. What is the modulus of the electric field at its point ##(0,3,4)\, \textrm{cm}?

Answer: ##2,87\cdot 10^4\, \textrmV}/\textrm{m}##
Relevant Equations
##E_\sigma=\dfrac{\sigma}{2\varepsilon_0}##
Captura de 2022-03-21 20-39-47.png

At point ##P(0,0'03,0'04)## the field caused by the sphere is added to the field caused by the plane.
First, ##E_\sigma##
$$E_\sigma=\dfrac{\sigma}{2\varepsilon_0}=\dfrac{0,2\cdot 10^{-6}}{2\varepsilon_0}=11299,44\, \textrm{V}/\textrm{m}$$
Then, ##E_0##: Because ##r<R##:
$$E_0=\dfrac{\rho}{3\varepsilon_0}r=\dfrac{10^{-6}\cdot 10}{3\varepsilon_0}$$
We see that ##r=|\vec{r}|=\sqrt{0,03^2+0,04^2}=0,05\, \textrm{m}## because ##\vec{r}=(0,0'03,0'04)-(0,0,0)=(0,0'03,0'04)##. Then,
$$E_0=\dfrac{10\cdot 10^{-6}}{3\varepsilon_0}\cdot 0,05=18832,39\, \textrm{V}/\textrm{m}$$
Finally,
$$E_T=E_\sigma +E_0=18832,39+11299,44=30131,83\, \textrm{V}/\textrm{m}$$

I don't get the solution I should give, should I have done modulus instead of direct summation?
 
Physics news on Phys.org
Do the two electric fields ##\vec E_0## and ##\vec E_{\sigma}## point in the same direction at the point (0, 3 cm, 4 cm)?
 
TSny said:
Do the two electric fields ##\vec E_0## and ##\vec E_{\sigma}## point in the same direction at the point (0, 3 cm, 4cm)?
No. ##\vec E_{\sigma}## is vertical, and the other has vertical and horizontal components, doesn't it?
 
Guillem_dlc said:
No. ##\vec E_{\sigma}## is vertical, and the other has vertical and horizontal components, doesn't it?
Right.
 
  • Like
Likes   Reactions: Guillem_dlc
TSny said:
Right.
But how do I separate the ##\vec E_0##? The formula is:
$$E_0=\dfrac{\rho}{3\varepsilon_0}r$$
 
Guillem_dlc said:
But how do I separate the ##\vec E_0##?
To find the components of ##\vec E_0## use your knowledge of the direction of ##\vec E_0##. A vector diagram can be helpful.
 
TSny said:
To find the components of ##\vec E_0## use your knowledge of the direction of ##\vec E_0##. A vector diagram can be helpful.
Right. With sine and cosine, right? And I find the angle with the point. Then I multiply the result I have by these and it will give me the two axes, won't it?
 
Guillem_dlc said:
Right. With sine and cosine, right? And I find the angle with the point. Then I multiply the result I have by these and it will give me the two axes, won't it?
That sounds like the right approach. I would have to see your detailed calculations to be sure.
 
  • Like
Likes   Reactions: Guillem_dlc
  • #10
Guillem_dlc said:
Right. With sine and cosine, right? And I find the angle with the point. Then I multiply the result I have by these and it will give me the two axes, won't it?
It's simpler to use the unit vector ##\hat r = \frac{1}{5}(0, 3, 4)##.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
6
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K