- 1,753
- 143
A cube of side L=2.0 m is centered at the origin, with the coordinate axes perpendicular to its faces. Find the flux of the electric field \overrightarrow E = \left( {15{\rm{ N/C}}} \right){\rm{\hat i + }}\left( {{\rm{27 N/C}}} \right){\rm{\hat j + }}\left( {{\rm{39 N/C}}} \right){\rm{\hat k}} through each face of the cube.
Let's just concentrate on the cube's left face. From class notes \Phi _{{\rm{left}}} = \left\langle {\overrightarrow E \cdot {\rm{\hat n}}} \right\rangle {\rm{ Area}}
\begin{array}{l}<br /> \Phi _{{\rm{left}}} = \left\langle {\overrightarrow E \cdot {\rm{\hat n}}} \right\rangle {\rm{ Area = }}\left( {15{\rm{ N/C}} \cdot 1} \right){\rm{ + }}\left( {{\rm{27 N/C}} \cdot 0} \right){\rm{ + }}\left( {{\rm{39 N/C}} \cdot 0} \right)\left( {2{\rm{m}}} \right)^2 {\rm{ = }}\left( {15{\rm{ N/C}}} \right){\rm{ + }}\left( 0 \right){\rm{ + }}\left( 0 \right)\left( {2{\rm{m}}} \right)^2 = \\ <br /> \\ <br /> \left( {15{\rm{ N/C}}} \right)4{\rm{m}}^2 = 60{\rm{Nm}}^{\rm{2}} /{\rm{C}} \\ <br /> \end{array}
But the units are wrong. Shouldn't they be C/m2 ?
Let's just concentrate on the cube's left face. From class notes \Phi _{{\rm{left}}} = \left\langle {\overrightarrow E \cdot {\rm{\hat n}}} \right\rangle {\rm{ Area}}
\begin{array}{l}<br /> \Phi _{{\rm{left}}} = \left\langle {\overrightarrow E \cdot {\rm{\hat n}}} \right\rangle {\rm{ Area = }}\left( {15{\rm{ N/C}} \cdot 1} \right){\rm{ + }}\left( {{\rm{27 N/C}} \cdot 0} \right){\rm{ + }}\left( {{\rm{39 N/C}} \cdot 0} \right)\left( {2{\rm{m}}} \right)^2 {\rm{ = }}\left( {15{\rm{ N/C}}} \right){\rm{ + }}\left( 0 \right){\rm{ + }}\left( 0 \right)\left( {2{\rm{m}}} \right)^2 = \\ <br /> \\ <br /> \left( {15{\rm{ N/C}}} \right)4{\rm{m}}^2 = 60{\rm{Nm}}^{\rm{2}} /{\rm{C}} \\ <br /> \end{array}
But the units are wrong. Shouldn't they be C/m2 ?