Calculating Electric Flux Through Cube's Left Face

Click For Summary
SUMMARY

The discussion focuses on calculating the electric flux through the left face of a cube with side length L=2.0 m, centered at the origin, subjected to an electric field \overrightarrow E = (15 N/C) \hat{i} + (27 N/C) \hat{j} + (39 N/C) \hat{k}. The calculated flux through the left face is determined to be -60 Nm²/C, confirming that the signs and units are correctly applied. The total flux through the cube is confirmed to sum to zero, consistent with Gauss' Law, as there is no enclosed charge within the cube.

PREREQUISITES
  • Understanding of electric flux and its calculation using the formula Φ = ⟨E · n⟩ Area.
  • Familiarity with Gauss' Law and its implications for electric fields and charge.
  • Knowledge of vector dot products and their application in physics.
  • Basic understanding of units in electromagnetism, specifically Nm²/C and C/m².
NEXT STEPS
  • Study the derivation and applications of Gauss' Law in electrostatics.
  • Learn about electric field calculations for different geometries, including spheres and cylinders.
  • Explore the concept of surface charge density and its relationship to electric flux.
  • Investigate the implications of electric field uniformity and its effects on flux calculations.
USEFUL FOR

Students of physics, particularly those studying electromagnetism, educators teaching electric field concepts, and professionals working in electrical engineering or related fields.

tony873004
Science Advisor
Gold Member
Messages
1,753
Reaction score
143
A cube of side L=2.0 m is centered at the origin, with the coordinate axes perpendicular to its faces. Find the flux of the electric field \overrightarrow E = \left( {15{\rm{ N/C}}} \right){\rm{\hat i + }}\left( {{\rm{27 N/C}}} \right){\rm{\hat j + }}\left( {{\rm{39 N/C}}} \right){\rm{\hat k}} through each face of the cube.

Let's just concentrate on the cube's left face. From class notes \Phi _{{\rm{left}}} = \left\langle {\overrightarrow E \cdot {\rm{\hat n}}} \right\rangle {\rm{ Area}}

\begin{array}{l}<br /> \Phi _{{\rm{left}}} = \left\langle {\overrightarrow E \cdot {\rm{\hat n}}} \right\rangle {\rm{ Area = }}\left( {15{\rm{ N/C}} \cdot 1} \right){\rm{ + }}\left( {{\rm{27 N/C}} \cdot 0} \right){\rm{ + }}\left( {{\rm{39 N/C}} \cdot 0} \right)\left( {2{\rm{m}}} \right)^2 {\rm{ = }}\left( {15{\rm{ N/C}}} \right){\rm{ + }}\left( 0 \right){\rm{ + }}\left( 0 \right)\left( {2{\rm{m}}} \right)^2 = \\ <br /> \\ <br /> \left( {15{\rm{ N/C}}} \right)4{\rm{m}}^2 = 60{\rm{Nm}}^{\rm{2}} /{\rm{C}} \\ <br /> \end{array}

But the units are wrong. Shouldn't they be C/m2 ?
 
Physics news on Phys.org
Shouldn't they be C/m2 ?
This quantity defines surface charge density, not the flux.
 
Integrated flux is N*m^2/C, right. Gauss' Law says integrated flux*epsilon_0=Q. The units of epsilon_0 are C^2/(N*m^2). So Q comes out to be coulombs. Everything looks ok to me.
 
Thanks. I'm glad I got the units right then.
Can someone look over this and tell me if I did it right? Did I get the signs right? It's the first time I've done this type of problem, and the answer isn't in the back of the book.

Although it didn't ask for total flux, should this add to 0?

Thanks!
\begin{array}{l}<br /> {\rm{\hat n}}_{{\rm{right}}} {\rm{ = \hat i}} \\ <br /> {\rm{\hat n}}_{{\rm{left}}} {\rm{ = }} - {\rm{\hat i}} \\ <br /> {\rm{\hat n}}_{{\rm{top}}} {\rm{ = \hat k}} \\ <br /> {\rm{\hat n}}_{{\rm{bottom}}} {\rm{ = }} - {\rm{\hat k}} \\ <br /> {\rm{\hat n}}_{{\rm{back}}} {\rm{ = \hat j}} \\ <br /> {\rm{\hat n}}_{{\rm{front}}} {\rm{ = }} - {\rm{\hat j}} \\ <br /> \\ <br /> \end{array}<br />

<br /> \begin{array}{l}<br /> \Phi _{{\rm{left}}} = \left\langle {\overrightarrow E \cdot {\rm{\hat n}}} \right\rangle {\rm{ Area = }}\left( {15{\rm{ N/C}} \cdot 1} \right){\rm{ + }}\left( {{\rm{27 N/C}} \cdot 0} \right){\rm{ + }}\left( {{\rm{39 N/C}} \cdot 0} \right)\left( {2{\rm{m}}} \right)^2 {\rm{ = }}\left( {15{\rm{ N/C}}} \right){\rm{ + }}\left( 0 \right){\rm{ + }}\left( 0 \right)\left( {2{\rm{m}}} \right)^2 \\ <br /> \,\,\,\,\,\,\,\,\,\, = \,\,\left( {15{\rm{ N/C}}} \right)4{\rm{m}}^2 = - 60\,{\rm{Nm}}^{\rm{2}} /{\rm{C}} \\ <br /> \\ <br /> \Phi _{{\rm{right}}} = \, - \Phi _{{\rm{left}}} = 60\,{\rm{Nm}}^{\rm{2}} {\rm{/C}} \\ <br /> \\ <br /> \Phi _{{\rm{top}}} = \left\langle {\overrightarrow E \cdot {\rm{\hat n}}} \right\rangle {\rm{ Area = }}\left( {15{\rm{ N/C}} \cdot 0} \right){\rm{ + }}\left( {{\rm{27 N/C}} \cdot 0} \right){\rm{ + }}\left( {{\rm{39 N/C}} \cdot 1} \right)\left( {2{\rm{m}}} \right)^2 {\rm{ = }}\left( {39{\rm{ N/C}}} \right){\rm{ + }}\left( 0 \right){\rm{ + }}\left( 0 \right)\left( {2{\rm{m}}} \right)^2 \\ <br /> \,\,\,\,\,\,\,\,\,\, = \,\,\left( {39{\rm{ N/C}}} \right)4{\rm{m}}^2 = 156\,{\rm{Nm}}^{\rm{2}} /{\rm{C}} \\ <br /> \\ <br /> \Phi _{{\rm{bottom}}} = - \Phi _{{\rm{top}}} = - 156\,{\rm{Nm}}^{\rm{2}} /{\rm{C}} \\ <br /> \\ <br /> \Phi _{{\rm{front}}} = \left\langle {\overrightarrow E \cdot {\rm{\hat n}}} \right\rangle {\rm{ Area = }}\left( {15{\rm{ N/C}} \cdot 0} \right){\rm{ + }}\left( {{\rm{27 N/C}} \cdot - {\rm{\hat j}}} \right){\rm{ + }}\left( {{\rm{39 N/C}} \cdot 0} \right)\left( {2{\rm{m}}} \right)^2 {\rm{ = }}\left( {27{\rm{ N/C}}} \right){\rm{ + }}\left( 0 \right){\rm{ + }}\left( 0 \right)\left( {2{\rm{m}}} \right)^2 \\ <br /> \,\,\,\,\,\,\,\,\,\,\,\, = \,\,\left( {27{\rm{ N/C}}} \right)4{\rm{m}}^2 = - 108\,{\rm{Nm}}^{\rm{2}} /{\rm{C}} \\ <br /> \\ <br /> \Phi _{{\rm{back}}} = - \Phi _{{\rm{front}}} = 108\,{\rm{Nm}}^{\rm{2}} /{\rm{C}} \\ <br /> \end{array}
 
Sure it adds to zero. There is no charge in the cube. Otherwise the E field wouldn't be constant. Right?
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
Replies
3
Views
572
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
4K
Replies
170
Views
8K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
1
Views
2K
Replies
2
Views
2K
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
4K