Calculating F, V and C: Why Can It Not Be Obtained This Way?

  • Thread starter Thread starter hidemi
  • Start date Start date
AI Thread Summary
The discussion centers on the incorrect approach to calculating force, velocity, and potential energy in a specific problem. The error lies in treating acceleration as the derivative of velocity with respect to position instead of time, leading to an incorrect expression for velocity. The correct method involves recognizing that acceleration is the time derivative of velocity and requires solving a differential equation using separation of variables. Additionally, a different notation for derivatives can clarify the relationships between acceleration, velocity, and position. The conversation emphasizes the importance of correctly applying calculus principles to derive accurate physical equations.
hidemi
Messages
206
Reaction score
36
Homework Statement
A 0.20-kg particle moves along the x axis under the influence of a conservative force. The potential energy is given by

U(x) = (8.0 J/m^2)x^2 + (2.0 J/m^4)x^4,

where x is in coordinate of the particle. If the particle has a speed of 5.0 m/s when it is at x = 1.0 m, its speed when it is at the origin is:

a) 0 m/s
b) 2.5 m/s
c) 5.7 m/s
d) 7.9 m/s
e) 11 m/s

The answer is E.
Relevant Equations
K1 + U1 = K2 + U2
The correct answer can be obtained by the calculation as attached.
12.png

However it can not be gotten by the following way. Why?
F = -∇U = -[ 16x + 8x^3] = ma
Since m = 0.2, a = -80x - 40x^3
V = -40x^2 - 10x^4 +C =5
c= 50 + 5 =55
 
Physics news on Phys.org
You have treated acceleration as if it were the derivative of velocity with respect to position when it is the derivative of velocity with respect to time.
 
Your mistake is that the velocity is the integral of acceleration with respect to time t , not with respect to the distance or x-coordinate. So your line

hidemi said:
V=-40x^2-10x^4+C
is wrong. To continue with your way, you should set ##a=\frac{dv}{dt}=\frac{dv}{dx}\frac{dx}{dt}=\frac{dv}{dx}v## and solve the ODE $$-16x-8x^3=m\frac{dv}{dx}v$$ by the separating variables technique.
 
Delta2 said:
Your mistake is that the velocity is the integral of acceleration with respect to time t , not with respect to the distance or x-coordinate. So your lineis wrong. To continue with your way, you should set ##a=\frac{dv}{dt}=\frac{dv}{dx}\frac{dx}{dt}=\frac{dv}{dx}v## and solve the ODE $$-16x-8x^3=m\frac{dv}{dx}v$$ by the separating variables technique.
Thanks for your remider :)
 
Similar technique, but slightly different on execution is to let a dot denote derivative with respect to time, i.e., ##a = \ddot x## and ##v = \dot x##. The equation of motion becomes
$$
\ddot x = -80x - 40 x^3.
$$
Multiplying both sides with ##v = \dot x## leads to
$$
v \dot v = \ddot x \dot x = -80 x \dot x - 40 x^3 \dot x.
$$
Noting that for any function ##g(t)##, it holds that ##d(g^n)/dt = n g^{n-1} \dot g## therefore leads to
$$
\frac{d}{dt} \left[\frac 12 v^2\right] = \frac{d}{dt}\left[ - 40 x^2 - 10 x^4\right],
$$
which means the expressions being differentiated differ by a constant, which is essentially the conservation of energy equation.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top