sunnyday11
- 14
- 0
Homework Statement
F(x,y,z) = zy i + z k
and the surface S defined by x2 + y2 + z2 = 4, z\geq\sqrt{3}
Homework Equations
The Attempt at a Solution
Using line integral method, I got -\sqrt{3}\pi
But using the flux of curl method, I got curl = y j - z k
Then I change surface integral to double integral using z=\sqrt{4 - x<sup>2</sup> - y<sup>2</sup>}
and parameterization r(t) = rcost i + rsint j.
\int ^{0}_{1}\int ^{0}_{2pi} ( r3sin2t / \sqrt{4-r<sup>2</sup>} - \sqrt{4-r<sup>2</sup>} ) dt dr
Then I arrive at \int ^{0}_{1} ( r3/\sqrt{4-r<sup>2</sup>} - \sqrt{4-r<sup>2</sup>} ) dr
and I got stuck.
Thank you very much!