MHB Calculating Genus of a Curve Using Falting's Theorem

  • Thread starter Thread starter bitsmath
  • Start date Start date
  • Tags Tags
    Curve
bitsmath
Messages
3
Reaction score
0
Hello!
I would like to learn finding genus of my curve $x^2-x+y-y^5$. Also, I want to know how to apply Falting's Theorem to conclude finitely many rational points of my curve.
Thanks in advance!
 
Mathematics news on Phys.org
Where did you find this problem?

For the question, Falting's theorem states that if the genus of a given curve is $> 1$ then it has finitely many $\Bbb Q$-points. So having the genus automatically answers your second question about Falting, so that part is superfluous.

Not really sure how to compute genus of this particular curve. Have you looked at the corresponding Riemannsurface over $\Bbb P^1$? Perhaps Riemann-Hurwitz or some such?
 
bitsmath said:
Hello!
I would like to learn finding genus of my curve x^2-x+y-y^5 = 0. This is no doubt, it is hyper-elliptic curve and has genus 2. But, I do not know the technique of finding genus. Awaiting suitable reply.

Thanks in advance! Please explain

- - - Updated - - -

mathbalarka said:
Where did you find this problem?

For the question, Falting's theorem states that if the genus of a given curve is $> 1$ then it has finitely many $\Bbb Q$-points. So having the genus automatically answers your second question about Falting, so that part is superfluous.

Not really sure how to compute genus of this particular curve. Have you looked at the corresponding Riemannsurface over $\Bbb P^1$? Perhaps Riemann-Hurwitz or some such?[Sir, I got your message and I re-edited my question by equating to 0. Please explain how to find genus of my curve. This problem is self made.]
 
Well, I have already given you a plausible way to approach this. There are pretty well-known formulas for calculating genus of Riemann surfaces, try them out! If you don't know how to compute genus of Riemann surfaces, try getting a decent book.

This is no doubt, it is hyper-elliptic curve and has genus 2.

If you already know that it has genus 2, what is your question?
 
mathbalarka said:
Well, I have already given you a plausible way to approach this. There are pretty well-known formulas for calculating genus of Riemann surfaces, try them out! If you don't know how to compute genus of Riemann surfaces, try getting a decent book.
If you already know that it has genus 2, what is your question?

I Don't know how to find genus of my curve. I understand by your quote, it has 2. But I want to learn how you came to know that, genus of my curve is 2?[/QUOTE]
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top