Calculating Genus of a Curve Using Falting's Theorem

  • Context: MHB 
  • Thread starter Thread starter bitsmath
  • Start date Start date
  • Tags Tags
    Curve
Click For Summary
SUMMARY

The discussion centers on calculating the genus of the curve defined by the equation $x^2 - x + y - y^5 = 0$ and applying Falting's Theorem to determine the number of rational points. It is established that this curve is hyper-elliptic and has a genus of 2. The participants suggest using Riemann surfaces and the Riemann-Hurwitz formula as methods for computing the genus, emphasizing the importance of understanding these concepts to apply Falting's Theorem effectively.

PREREQUISITES
  • Understanding of hyper-elliptic curves
  • Familiarity with Riemann surfaces
  • Knowledge of the Riemann-Hurwitz formula
  • Basic principles of algebraic geometry
NEXT STEPS
  • Study the Riemann-Hurwitz formula for calculating the genus of Riemann surfaces
  • Explore hyper-elliptic curves and their properties
  • Read about Falting's Theorem and its implications for rational points on curves
  • Consult algebraic geometry textbooks for detailed methodologies on genus computation
USEFUL FOR

Mathematicians, algebraic geometers, and students interested in the properties of curves and their genus, particularly those studying rational points and the applications of Falting's Theorem.

bitsmath
Messages
3
Reaction score
0
Hello!
I would like to learn finding genus of my curve $x^2-x+y-y^5$. Also, I want to know how to apply Falting's Theorem to conclude finitely many rational points of my curve.
Thanks in advance!
 
Physics news on Phys.org
Where did you find this problem?

For the question, Falting's theorem states that if the genus of a given curve is $> 1$ then it has finitely many $\Bbb Q$-points. So having the genus automatically answers your second question about Falting, so that part is superfluous.

Not really sure how to compute genus of this particular curve. Have you looked at the corresponding Riemannsurface over $\Bbb P^1$? Perhaps Riemann-Hurwitz or some such?
 
bitsmath said:
Hello!
I would like to learn finding genus of my curve x^2-x+y-y^5 = 0. This is no doubt, it is hyper-elliptic curve and has genus 2. But, I do not know the technique of finding genus. Awaiting suitable reply.

Thanks in advance! Please explain

- - - Updated - - -

mathbalarka said:
Where did you find this problem?

For the question, Falting's theorem states that if the genus of a given curve is $> 1$ then it has finitely many $\Bbb Q$-points. So having the genus automatically answers your second question about Falting, so that part is superfluous.

Not really sure how to compute genus of this particular curve. Have you looked at the corresponding Riemannsurface over $\Bbb P^1$? Perhaps Riemann-Hurwitz or some such?[Sir, I got your message and I re-edited my question by equating to 0. Please explain how to find genus of my curve. This problem is self made.]
 
Well, I have already given you a plausible way to approach this. There are pretty well-known formulas for calculating genus of Riemann surfaces, try them out! If you don't know how to compute genus of Riemann surfaces, try getting a decent book.

This is no doubt, it is hyper-elliptic curve and has genus 2.

If you already know that it has genus 2, what is your question?
 
mathbalarka said:
Well, I have already given you a plausible way to approach this. There are pretty well-known formulas for calculating genus of Riemann surfaces, try them out! If you don't know how to compute genus of Riemann surfaces, try getting a decent book.
If you already know that it has genus 2, what is your question?

I Don't know how to find genus of my curve. I understand by your quote, it has 2. But I want to learn how you came to know that, genus of my curve is 2?[/QUOTE]
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K