MHB Calculating G's Distance from BH on an ABCD.EFGH Cube

  • Thread starter Thread starter Monoxdifly
  • Start date Start date
  • Tags Tags
    Cube
Monoxdifly
MHB
Messages
288
Reaction score
0
In an ABCD.EFGH cube whose side length is 8, the distance between the point G and the line BH is ...
A. 4 cm
B. $$4\sqrt2$$ cm
C. $$4\sqrt3$$ cm
D. $$8\sqrt2$$ cm
E. $$8\sqrt3$$ cm

I got $$\frac{8}{3}\sqrt6$$ cm. Do you guys get the same answer?
 
Mathematics news on Phys.org
Monoxdifly said:
In an ABCD.EFGH cube whose side length is 8, the distance between the point G and the line BH is ...
A. 4 cm
B. $$4\sqrt2$$ cm
C. $$4\sqrt3$$ cm
D. $$8\sqrt2$$ cm
E. $$8\sqrt3$$ cm

I got $$\frac{8}{3}\sqrt6$$ cm. Do you guys get the same answer?
I agree with you: $\frac83\sqrt6$. It's odd that in two separate problems the answer does not appear in the list of choices.

I am getting these answers on the assumption that "an ABCD.EFGH cube" means a cube where the base is ABCD, and the upper vertices are above the corresponding lower ones, so that EA, FB, GC and HD are the vertical sides. Presumably that is what is intended?
 
Opalg said:
I am getting these answers on the assumption that "an ABCD.EFGH cube" means a cube where the base is ABCD, and the upper vertices are above the corresponding lower ones, so that EA, FB, GC and HD are the vertical sides. Presumably that is what is intended?

Yes, that is what's intended.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top