MHB Calculating Harmonics from FFT of sin(x) Function

Click For Summary
The discussion centers on extracting harmonics from the Fourier Cosine Transform of the function cos(x) defined over a finite interval. It is noted that the function would exhibit only one harmonic if it were defined over the entire real line, but its limited definition complicates harmonic extraction. The participants inquire about determining the number of harmonics in both this function and more complex signals, such as amplitude modulation signals. A key point raised is that non-periodic functions yield a continuous spectrum rather than discrete harmonics. The conversation emphasizes the mathematical challenges of analyzing harmonics in non-periodic functions.
bugatti79
Messages
786
Reaction score
4
Hi Folks,

The Fourier Cosine Transform of cos(x) for 0<x<a and 0 everywhere else is given as

F(\omega)=\displaystyle\frac{1}{\sqrt{2 \pi}}[\frac{\sin a (1-\omega)}{1-\omega}+\frac{\sin a (1+\omega)}{1+\omega}]

I can plot this and we get a continuous amlitude spectrum of F(\omega) against (\omega)

but how do I extract/obtain the harmonic of this function which we know has just one harmonic. How do i extract this mathematically and/or from the graph say?

Thanks
 
Physics news on Phys.org
bugatti79 said:
Hi Folks,

The Fourier Cosine Transform of cos(x) for 0<x<a and 0 everywhere else is given as

F(\omega)=\displaystyle\frac{1}{\sqrt{2 \pi}}[\frac{\sin a (1-\omega)}{1-\omega}+\frac{\sin a (1+\omega)}{1+\omega}]

I can plot this and we get a continuous amlitude spectrum of F(\omega) against (\omega)

but how do I extract/obtain the harmonic of this function which we know has just one harmonic. How do i extract this mathematically and/or from the graph say?

Thanks

The function would have only one harmonic if it were defined as $\cos x$ for $- \infty< x < + \infty$ ... but it is not so ...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
The function would have only one harmonic if it were defined as $\cos x$ for $- \infty< x < + \infty$ ... but it is not so ...

Kind regards

$\chi$ $\sigma$

Is there not one harmonic over 1 period?

In either case, is it possible to determine how many harmonics there are? The reason I ask is because i want to find the harmonics of a more complicated function like an amplitude modulation signal when i do the fft

$$A_c[1+A_1\cos(\omega_1 t+\phi_1)]\cos(\omega_c+\phi_c)$$

thanks
 
bugatti79 said:
Is there not one harmonic over 1 period?

In either case, is it possible to determine how many harmonics there are? The reason I ask is because i want to find the harmonics of a more complicated function like an amplitude modulation signal when i do the fft

$$A_c[1+A_1\cos(\omega_1 t+\phi_1)]\cos(\omega_c+\phi_c)$$

thanks

... there is a little detail... the function is non periodic... and that means that its spectrum doesn't contain 'harmonics' but is a continuos function...

Kind regards

$\chi$ $\sigma$
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 8 ·
Replies
8
Views
5K