Calculating Maximum Height: Confusion & Solutions

AI Thread Summary
The discussion revolves around calculating the maximum height required to achieve the greatest horizontal range when shooting at an angle of 0 degrees, while neglecting air resistance. The initial calculations suggest that the maximum height, h0, approaches zero, leading to confusion about the validity of this conclusion. Participants highlight that setting the first derivative of the range function to zero does not necessarily indicate a maximum height, as it may simply indicate a point where the derivative is zero. The need for a clearer understanding of the relationship between height and range is emphasized, suggesting that plotting the first derivative could provide better insight. Overall, the conversation reflects a struggle to reconcile mathematical results with physical intuition regarding projectile motion.
annamal
Messages
393
Reaction score
33
Homework Statement
What is the minimum height β„Ž0 above ground that is required to generate the greatest range shooting horizontally with an angle of 0 degrees and discounting air resistance? 𝑣0 is initial velocity.
Relevant Equations
y = h + vt + 0.5a*t^2
vx = v0*cos(theta)
vy = v0*sin(theta) - g*t
I am calculating it like this:
𝑦=β„Ž0βˆ’0.5𝑔𝑑^2=0β†’β„Ž0=0.5𝑔𝑑^2→𝑑=sqrt(2*β„Ž0/g)

π‘₯=𝑣0*𝑑→ substituting t β†’π‘₯=𝑣0*sqrt(2*β„Ž0/g)

𝑑π‘₯/π‘‘β„Ž0=𝑣0/(𝑔*sqrt(2*h0/g))=0 for maximum β„Ž0=0.
confused. can someone tell me how I am calculating this wrong?
 
Physics news on Phys.org
The question doesn't seem to make much sense.

eg: "angle of 0 degrees".
 
Last edited:
annamal said:
Homework Statement:: What is the minimum height β„Ž0 above ground that is required to generate the greatest range shooting horizontally with an angle of 0 degrees and discounting air resistance?
Uh ... as high as you can get. You don't see how that question makes no sense?
 
annamal said:
𝑑π‘₯/π‘‘β„Ž0=𝑣0/(𝑔*sqrt(2*h0/g))=0 for maximum β„Ž0=0.
confused. can someone tell me how I am calculating this wrong?
Does ##dx/dh_0=0## necessarily give you the point where x reaches a maximum? In what two ways might that not be true.
 
annamal said:
𝑑π‘₯/π‘‘β„Ž0=𝑣0/(𝑔*sqrt(2*h0/g))=0 for maximum β„Ž0=0.
So you have this formula for the first derivative of range as a function of height. And you seem have observed that this first derivative is maximized when height ##h_0## approaches zero.

But you seem to have lost track of what you were doing. You are looking for a height that makes the first derivative zero. Not a height that maximizes it.

If you plotted the first derivative, you could see that it looks a bit like just the first quadrant of a hyperbola.

[Googled up stock hyperbola]
1648469511641.png


Are there any zeroes for the first derivative?
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of ΞΈ(kindly see both the pics in the pdf file). The value of ΞΈ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top