Hitting a rocket with a projectile

Click For Summary
SUMMARY

The discussion revolves around calculating the angle of projection, θ₀, required for a projectile to hit a rocket at its maximum height. The participants derive the expression for tan(θ₀) as tan(θ₀) = (3A(A + 2g))/(4Bd), where A and B are constants related to the rocket's acceleration, d is the distance from the launch site, and g is the gravitational acceleration. The conversation highlights the importance of dimensional analysis in verifying the correctness of the derived equations. Ultimately, the final expression is confirmed to be dimensionally correct, leading to successful completion of the problem.

PREREQUISITES
  • Understanding of projectile motion and kinematics
  • Familiarity with calculus, particularly integration
  • Knowledge of dimensional analysis in physics
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the principles of projectile motion in physics
  • Learn about dimensional analysis and its applications in verifying equations
  • Explore calculus techniques for integration and differentiation
  • Practice solving problems involving kinematics and projectile trajectories
USEFUL FOR

Students in physics courses, educators teaching projectile motion, and anyone interested in applying calculus to real-world motion problems.

  • #31
Thanks, I finally got ##\tan (\theta) = \frac {3A( A + 2 g )} {4 d B^2}##
 
Physics news on Phys.org
  • #32
But...why it’s still incorrect?
 
  • #33
It is should be ##\frac { 3A( A + 2g )} {4Bd}##?
Because ##v_{x,0}= \frac {Bd(\sqrt{3A/B})} {3A}##
where,##v_{x,0} t_f= d##
 
Last edited:
  • #34
MichaelTam said:
Thanks, I finally got ##\tan (\theta) = \frac {3A( A + 2 g )} {4 d B^2}##
Use dimensional analysis to check your working.
Given the rocket's acceleration formula, A has dimension LT-2, B is LT-4. Your answer above fails the test.
 
  • #35
So the A must be in two dimension and B is 4 dimension, or A should be 1 dimension and B should be 3 dimension?
 
  • #36
6479EA76-6602-4E3F-A8C0-D0E142FF536B.png
BED5A3AA-BB66-48D4-91BA-8C4D309F1362.jpeg
7977515F-EFCC-4BCF-8680-74975B05BDA6.jpeg
95A62AF4-BB3E-4931-99D6-439D771F43B8.jpeg
 
  • #37
I had post all of m steps and assumptions, but I don’t know where I am wrong?
 
  • #38
Is this time I get the correct dimensions of both A and B?
 
  • #39
MichaelTam said:
So the A must be in two dimension and B is 4 dimension, or A should be 1 dimension and B should be 3 dimension?
Sounds like you have not learned dimensional analysis. You should, it's quite easy and very useful.
 
  • #40
I know, but I find don’t know if 3Ag is in two dimension, and## 4dB^2## is in 4 dimensions respect to time?Can I count the g as a dimension for 3Ag?And is ##4dB^2## is not in 4 dimension but in 3 dimension?
 
  • #41
I just remember the analysis...when you tell me up about that tool.
 
  • #42
MichaelTam said:
I know, but I find don’t know if 3Ag is in two dimension, and## 4dB^2## is in 4 dimensions respect to time?
[Ag]=LT-2LT-2=L2T-4
[dB2]=L(LT-4)2=L3T-8.
 
  • #43
So it still incorrect?But where I am wrong...Is my assumption of ##v_{x,0}## is not correct or I make mistake on the ##v_{y,0}##?
 
  • #44
MichaelTam said:
So it still incorrect?But where I am wrong...
The point about using dimensional analysis is that you can check each step. Use 'binary chop'. Start in the middle of your working; if it's ok there go to three quarters of the way , etc.
 
  • #45
Ok, I am trying
 
  • #46
My assumption in the
## v_{y,0}-(gt_f/2)= (At_f/2) - (Bt_f/12)## ( after simplify ) is not correct in dimension ?
 
  • #47
I still can’t find out how I get wrong although I know the thing I said before is wrong, I don’t know how to fix it...
 
  • #48
Your last line in post #36 is ##\tan(\theta)=\frac{3A(A+2g)}{4Bd}##, which is dimensionally correct and looks like the right answer to me.
How do you know it is wrong?
 
  • #49
You mean plus or equal of the symbol?
 
  • #50
MichaelTam said:
You mean plus or equal of the symbol?
=
 
  • #51
Thanks!
 
  • #52
I pass the course!,!,!
B06E2143-66C3-44D9-B030-158F265B1AD1.png
 
  • Like
Likes   Reactions: Hamiltonian
  • #53
Thanks!You a lot!Very much!
 
  • #54
  • Like
  • Haha
Likes   Reactions: Hamiltonian and etotheipi

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 23 ·
Replies
23
Views
8K
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 25 ·
Replies
25
Views
2K
Replies
10
Views
2K
Replies
13
Views
2K
  • · Replies 21 ·
Replies
21
Views
4K
Replies
12
Views
1K