Calculating shear stress in a beam?

  • #1

Main Question or Discussion Point

The equation for shear stress as I know it is VQ/It where V is the shear force, Q is the first moment of area(?), I is moment of inertia and t is the length of the section in question.
My question is, is there a general formula for Q? In my Solid Mechanics notes I've written that Q = ∫y.dA but for some reason this isn't giving me the answers I get from the equation τ= F. (A.ybar/I.t)
Could someone write down the general formula for Q?
 

Answers and Replies

  • #2
SteamKing
Staff Emeritus
Science Advisor
Homework Helper
12,796
1,667
The equation for shear stress as I know it is VQ/It where V is the shear force, Q is the first moment of area(?), I is moment of inertia and t is the length of the section in question.
My question is, is there a general formula for Q? In my Solid Mechanics notes I've written that Q = ∫y.dA but for some reason this isn't giving me the answers I get from the equation τ= F. (A.ybar/I.t)
Could someone write down the general formula for Q?
There is no general formula for Q. Q represents the first moment of area of the cross section from the point at which you wish to calculate the shear stress to the outermost edge of the section. Q does have to be calculated with reference to the centroid of the section, however.

The quantity t represents the thickness, not the length of the material in way of the shear stress location.

As to your formulas for calculation, VQ / I t is just a re-statement of F (A*y-bar) / I t, where the quantity A*y-bar = Q and F = V. In my experience, VQ / I t seems to be preferred in the US, whereas the other formula was used quite a lot in older texts written in the UK.

A book on strength of materials should illustrate how to treat the calculation of Q for specific examples of different cross sections.

If you have a particular case where you need to analyze the shear stress, please feel free to post this information and we'll be glad to discuss it with you.
 

Related Threads on Calculating shear stress in a beam?

Replies
3
Views
407
Replies
5
Views
1K
Replies
2
Views
486
Replies
10
Views
1K
  • Last Post
Replies
2
Views
2K
  • Last Post
Replies
3
Views
3K
Replies
2
Views
666
  • Last Post
Replies
9
Views
5K
  • Last Post
Replies
2
Views
2K
Replies
2
Views
569
Top