Calculating steel round bar's max capacity to support?

Click For Summary
SUMMARY

The discussion focuses on calculating the maximum capacity of a steel round bar, specifically a 2-inch diameter and 5-foot length bar, to support loads without bending. Key factors influencing the calculation include the type of steel, load distribution, support conditions, and acceptable deflection limits. Participants emphasize the importance of creating a Free Body Diagram, identifying end conditions, and using appropriate engineering formulas for beam loading. The consensus is that all materials will deflect under load, and engineering principles dictate acceptable deflection levels.

PREREQUISITES
  • Understanding of Free Body Diagrams in structural analysis
  • Familiarity with beam loading equations and material properties
  • Knowledge of different types of steel and their mechanical properties
  • Basic principles of structural engineering and deflection limits
NEXT STEPS
  • Research beam loading equations from Strength of Materials textbooks
  • Learn how to create and interpret Free Body Diagrams
  • Explore different types of steel and their mechanical properties
  • Study acceptable deflection limits in structural engineering
USEFUL FOR

Structural engineers, mechanical engineers, and anyone involved in designing or analyzing steel structures will benefit from this discussion.

esaulog
Messages
1
Reaction score
0
First off, I am new to this forum.. However I wanted
To find out if anyone would be able to help me calculate
How much a steel bar (2 in. In diameter, 5 ft. Lengthwise)
Would be able to hold up without bending?
 
Engineering news on Phys.org
esaulog said:
First off, I am new to this forum.. However I wanted
To find out if anyone would be able to help me calculate
How much a steel bar (2 in. In diameter, 5 ft. Lengthwise)
Would be able to hold up without bending?
Uh ... do you think maybe it might matter what KIND of steel you are talking about? Do you think it might matter where the supports are and where the load is? Could you maybe be a little more vague in your problem statement?
 
  • Like
Likes   Reactions: Bystander and Baluncore
esaulog said:
First off, I am new to this forum.. However I wanted
To find out if anyone would be able to help me calculate
How much a steel bar (2 in. In diameter, 5 ft. Lengthwise)
Would be able to hold up without bending?

Zero.

Even with no weight on the bar it's still bending under it's own weight.
Adding additional weight makes it bend more.
The real question is, how much deflection is acceptable?
 
Sigh. This doesn't have to be hard.

Specify, specify, specify before asking anything.
  • Sketch the arrangement (horizontal, vertical, something in between) and form a Free Body Diagram.
  • Identify the end conditions (simple, pinned, cantilevered, whatever).
  • Specify the loading (point load, distributed load), specify the material.
  • Find an Engineering-related website or (gasp) perhaps even a Strengths of Materials textbook that provides formulas for beam loading.
  • Find the applicable equation for beam loading.
  • Apply the correct material strength & section moment of inertia values.
  • Those equations will tell you the amount of stress & deflection present in the beam at any point.
  • Use those values to determine if your conditions are suitable.
The material is elastic and will always deflect under load ("zero"). But "Engineering" not "Science" determines what is an acceptable deflection.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 2 ·
Replies
2
Views
47K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
9K
  • · Replies 29 ·
Replies
29
Views
9K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 18 ·
Replies
18
Views
8K
  • · Replies 2 ·
Replies
2
Views
4K