MHB Calculating $$\sum_{0 \le k \le n}(-1)^k k^n \binom{n}{k}$$

  • Thread starter Thread starter MountEvariste
  • Start date Start date
MountEvariste
Messages
85
Reaction score
0
Find the value of $$\sum_{0 \le k \le n}(-1)^k k^n \binom{n}{k}. $$
 
Mathematics news on Phys.org
The answer is:

$\sum_{k=0}^{n}(-1)^kk^n\binom{n}{k} = (-1)^nn!\;\;\;\;(1)$

In order to show the identity, we need the following lemma:

$\sum_{k=0}^{n}(-1)^kk^m\binom{n}{k} = 0 , \, \, \, \, m = 0,1,.., n-1.\;\;\; (2)$

Proof by induction:

Consider the binomial identity: $(1-x)^n =\sum_{j=0}^{n}\binom{n}{j}(-1)^jx^j \;\;\; (3)$

Case $m = 0$: Putting $x = 1$ in $(3)$ yields: $\sum_{j=0}^{n}\binom{n}{j}(-1)^j = 0$

Case $m = 1$: Differentiating $(3)$ once yields: $-n(1-x)^{n-1} =\sum_{j=0}^{n}\binom{n}{j}(-1)^jjx^{j-1}$

Again putting $x = 1$: $\sum_{j=0}^{n}\binom{n}{j}(-1)^jj = 0$.

Assume the $m$th step is OK, where $1 \leq m < n-1$. We need to show, that our lemma also holds for step $m+1$:

Differentiate $(3)$ $m+1$ times:

$(-1)^{m+1}n(n-1)...(n-m)(1-x)^{n-m-1} = \sum_{j=0}^{n}\binom{n}{j}(-1)^jj(j-1)..(j-m)x^{j-m-1}$

Evaluating at $x = 1$:

\[\sum_{j=0}^{n}\binom{n}{j}(-1)^j\left ( j^{m+1}+c_mj^m+c_{m-1}j^{m-1} + ... + c_1j\right )=0 \\ \\ \sum_{j=0}^{n}\binom{n}{j}(-1)^jj^{m+1} + c_m\sum_{j=0}^{n}\binom{n}{j}(-1)^jj^m +c_{m-1}\sum_{j=0}^{n}\binom{n}{j}(-1)^jj^{m-1}+...+c_1\sum_{j=0}^{n}\binom{n}{j}(-1)^jj =0 \\ \therefore \sum_{j=0}^{n}\binom{n}{j}(-1)^jj^{m+1} = 0.\]

Now we are well prepared to prove, that $(1)$ holds. This will be another proof by induction:

Let $S_n = \sum_{k=0}^{n}(-1)^kk^n\binom{n}{k}$. Then we have:

$S_0 = 1 = (-1)^00!$, and $S_1 = (-1)^00^1\binom{1}{0}+(-1)^11^1\binom{1}{1} = -1 = (-1)^11!$

Therefore, we may assume, that $(1)$ holds for some step $ n > 1$: $S_n = (-1)^nn!$

\[S_{n+1} = \sum_{k=0}^{n+1}(-1)^kk^{n+1}\binom{n+1}{k} = \sum_{k=1}^{n+1}(-1)^kk^n\frac{(n+1)!}{(k-1)!(n+1-k)!}\\= \sum_{j=0}^{n}(-1)^{j+1}(j+1)^n\frac{(n+1)n!}{j!(n-j)!}= -(n+1)\sum_{j=0}^{n}(-1)^j(j+1)^n\binom{n}{j} \\= -(n+1)\sum_{j=0}^{n}(-1)^j\left ( 1+\binom{n}{1}j+\binom{n}{2}j^{2}+...+\binom{n}{n-1}j^{n-1}+j^n \right )\binom{n}{j} \\=-(n+1)\left ( \sum_{m=0}^{n-1}\binom{n}{m}\sum_{j=0}^{n}(-1)^jj^{m}\binom{n}{j}+S_n\right )\]

With the help of our lemma, the double sum in the parenthesis equals 0, so we are left with:

\[S_{n+1} = -(n+1)S_n = (-1)^{n+1}(n+1)! \;\;\; q.e.d.\]
 
Last edited:
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top