# Calculating the heat of vaporization of chloroform [thermochemistry]

• anisotropic
In summary, the lab involved calculating the vapour pressure of chloroform (TCM) at different temperatures using a flask apparatus. The objective was to determine the heat of vaporization of TCM by examining the relationship between vapour pressure and temperature. The provided Clausius-Clapeyron relation, which is independent of temperature, was used in the analysis. To determine the boiling point, the data was plotted as Pvapor vs. T and the temperature at which Pvapor equals the barometric pressure was extrapolated. Similarly, to calculate ΔHvapor, the data was plotted as lnPvapor vs. 1/T and the slope of the line (related to C) was determined. However, in this lab,
anisotropic
I am doing a lab writeup and am completely lost.

Summary of lab itself:
• Calculated the vapour pressure of chloroform (TCM) across a range of temperatures (using flask apparatus).
• Objective is to determine the heat of vaporization of TCM using the variation of vapour pressure with temperature.

Other info we are provided:
• Provided the Clausius-Clapeyron relation (lnP = -ΔHv/RT + C)
• "is independent of temperature"
• "C is a constant related to the entropy of vaporization"

I'm supposed to:
• plot Pvapor vs. T, and determine the boiling temp.
• plot lnPvapor vs. 1/T, and determine ΔHvapor

My questions:
• How do you calculate boiling point from this data? I am assuming it involves extrapolating and determining at what temperature Pvapor = Pbarometric ?
• How do you calculate ΔHvapor from this data without knowing C? That is, how are lnPvapor and 1/T related to C? (we are not given C and are supposed to determine it from the data)

Help would be appreciated.

Last edited:
Extrapolation OK, assume C is just a constant and not a function neither of P nor T.

Hello, I am happy to help you with your lab writeup. Calculating the heat of vaporization of a substance, in this case chloroform, is an important aspect of thermochemistry. Let's break down the steps you need to take in order to determine the heat of vaporization from the data you have collected.

First, let's review the Clausius-Clapeyron relation that was provided to you: lnP = -ΔHv/RT + C. This equation relates the natural logarithm of the vapor pressure (P) to the heat of vaporization (ΔHv), temperature (T), and a constant (C) which is related to the entropy of vaporization. This means that as the temperature increases, the vapor pressure also increases, but at a decreasing rate due to the negative sign in front of ΔHv in the equation.

To determine the boiling point of chloroform from the data, you will need to plot the vapor pressure (P) versus temperature (T). The boiling point is the temperature at which the vapor pressure of the substance equals the atmospheric pressure (Pbarometric). This can be determined by extrapolating the line of best fit on your graph to the x-axis (Pvapor = Pbarometric).

Next, to calculate ΔHv, you will need to plot lnP versus 1/T. This will give you a straight line with a slope of -ΔHv/R. The slope can be determined by calculating the change in y (lnP) over the change in x (1/T) for any two points on the line. This slope will give you the value for -ΔHv/R, and since R is a known constant, you can solve for ΔHv.

Finally, you mentioned that you are supposed to determine the constant C from the data. This can be done by calculating the y-intercept of your lnP versus 1/T graph. The y-intercept will be equal to C. Alternatively, if you have calculated ΔHv from the slope of the graph, you can rearrange the Clausius-Clapeyron equation to solve for C: C = lnP + ΔHv/RT.

I hope this helps clarify the steps you need to take in order to determine the heat of vaporization of chloroform. Good luck with your lab writeup!

## What is the heat of vaporization of chloroform?

The heat of vaporization of chloroform is the amount of energy required to change one mole of liquid chloroform into its gaseous state at a constant temperature and pressure.

## How is the heat of vaporization of chloroform calculated?

The heat of vaporization of chloroform can be calculated by using the equation q = m x ΔHvap, where q is the heat of vaporization, m is the mass of chloroform, and ΔHvap is the molar heat of vaporization.

## What is the molar heat of vaporization of chloroform?

The molar heat of vaporization of chloroform is the amount of energy required to vaporize one mole of liquid chloroform at a constant temperature and pressure. It is typically given in units of Joules per mole (J/mol).

## What factors can affect the heat of vaporization of chloroform?

The heat of vaporization of chloroform can be affected by factors such as temperature, pressure, and the presence of impurities in the liquid chloroform. Higher temperatures and lower pressures generally result in a higher heat of vaporization, while impurities can lower the heat of vaporization.

## Why is calculating the heat of vaporization of chloroform important?

Calculating the heat of vaporization of chloroform is important in understanding the physical properties of the substance and its behavior under different conditions. It is also useful in various industrial processes, such as distillation and refrigeration, where knowledge of the heat of vaporization is necessary for efficient operations.

• Chemistry
Replies
131
Views
5K
• Chemistry
Replies
11
Views
1K
• Introductory Physics Homework Help
Replies
3
Views
1K
• Chemistry
Replies
1
Views
2K
• Chemistry
Replies
8
Views
4K
• Introductory Physics Homework Help
Replies
23
Views
1K
• Classical Physics
Replies
1
Views
711
• Mechanical Engineering
Replies
8
Views
2K
• Biology and Chemistry Homework Help
Replies
1
Views
2K
• Thermodynamics
Replies
3
Views
1K