dRic2
Gold Member
- 887
- 225
Suppose I prepare an experiment where I excite a single mode of oscillation of the lattice, that is something like ##u(x, t) = Ae^{i(kx-\omega t)} ## (in the classical limit). The energy corresponding to that mode should be ##E = \frac 1 2 \rho L^3 A^2 \omega^2 ##. If I equate this equation to ##E(k) = \hbar \omega(k) (N_{k} + \frac 1 2)## can I conclude that the number of phonons is exactly ##N_{k}## ?
I think the answer is no, but I'm not totally sure.
My reasoning is that, if ##N_{k}## is the exact umber of phonons, then the only possible way to describe the state of the lattice is
$$ | \psi > = |0, 0, 0, ..., N_{k}, 0, 0, ..., 0>$$
Isn't this in contradiction with the fact that phonons number is not conserved ? I am a bit confused about this... I can see that the particle number operator N does not commute with the phonon hamiltonian, but I don't know how to interpret this on empirical grounds.
I think the answer is no, but I'm not totally sure.
My reasoning is that, if ##N_{k}## is the exact umber of phonons, then the only possible way to describe the state of the lattice is
$$ | \psi > = |0, 0, 0, ..., N_{k}, 0, 0, ..., 0>$$
Isn't this in contradiction with the fact that phonons number is not conserved ? I am a bit confused about this... I can see that the particle number operator N does not commute with the phonon hamiltonian, but I don't know how to interpret this on empirical grounds.
... It's like I'm asking this question for the first time ahahah. As you said, usually one has that the average energy of a singe mode is given by