Calculating the Radius of a Charged Ion's Path in a Magnetic Field

Click For Summary
SUMMARY

The discussion centers on calculating the radius of a charged ion's path in a magnetic field using the formula r = mv/qB. A singly charged positive ion with a mass of 2.50 x 10^-26 kg is accelerated through a potential difference of 250 V and enters a magnetic field of 0.500 T. The velocity of the ion, calculated using the energy gained from the potential difference (E = qV), is approximately 5.66 x 10^4 m/s. The discussion also touches on the transition to relativistic kinetic energy when velocities approach the speed of light.

PREREQUISITES
  • Understanding of basic physics concepts such as kinetic energy and electric potential.
  • Familiarity with the formula for the radius of a charged particle's path in a magnetic field (r = mv/qB).
  • Knowledge of the relationship between energy, charge, and potential difference (E = qV).
  • Basic understanding of relativistic physics and the equation for relativistic kinetic energy.
NEXT STEPS
  • Study the derivation and applications of the formula r = mv/qB in different contexts.
  • Learn about the implications of relativistic effects on charged particles at high velocities.
  • Explore the relationship between kinetic energy and potential energy in charged particles.
  • Investigate the principles of magnetic fields and their effects on charged particles in motion.
USEFUL FOR

Students and professionals in physics, particularly those focusing on electromagnetism, particle physics, and anyone interested in the behavior of charged particles in magnetic fields.

Trista
Messages
32
Reaction score
0
Here is the problem:
A singly charged positive ion has a mass of 2.50 X 10 ^-26 kg. After being accelerated through a potential difference of 250 V, the ion enters a magnetic field of 0.500 T, in a direction perpendicular to the field. Calculate the radius of the path of the ion in the field.

I believe the formula to use is this: r = mv/qB
and it should look like this with what is given:
r = (2.5 X 10^-26 kg) v / (1.6 X 10^-19)(.50T)

if that is correct, the only thing I'm having trouble with is the velocity. How do I find the velocity? :blushing:

if that isn't correct, then I'm lost. :blushing: :blushing:

Thank you for your help.
 
Physics news on Phys.org
Hi :)

The formula you stated is absolutely correct. To find the velocity after being accelerated, first you'll have to find the energy the ion has gained from rest to after being accelerated. Since the ion is singly charged, it carries a charge of 1.6 X 10 ^-19.

Energy gained by the ion = qV where q is the charge of the ion and V the P.D.

This value is equivalent to the KE gained by the ion which is = 1/2(m)(v)^2. You can then find the velocity. Should work out to approx 5.66 X 10^4 ms^-1
 
Last edited:
Just to add to what al_201314 said, if the velocity was to become very close to the speed of light (c), you would have to use the equation for relativistic kinetic energy. However, as in this case the velocity is much less than c, using standard kinetic energy is a good approximation.

~H
 
al_201314 said:
Hi :)


Energy gained by the ion = qV where q is the charge of the ion and V the P.D.

This value is equivalent to the KE gained by the ion which is = 1/2(m)(v)^2. You can then find the velocity. Should work out to approx 5.66 X 10^4 ms^-1

THANK YOU... I got it. SO MUCH HELP! thank you thank you thank you
 
Last edited:
Hootenanny said:
Just to add to what al_201314 said, if the velocity was to become very close to the speed of light (c), you would have to use the equation for relativistic kinetic energy. However, as in this case the velocity is much less than c, using standard kinetic energy is a good approximation.

Is there a way to relate the classical 1/2m(v)^2 to E=m(c)^2? Does it mean to say that if the ion is moving close to the speed of light it will possesses energy equivalent to its mass an the square of the speed of light? Why is this so since even a stationary mass will have energy according to E=m(c)^2?

Thanks for the help, these questions just got to me when I read your post and I do not have a deep understanding of relativity.
 
al_201314 said:
Is there a way to relate the classical 1/2m(v)^2 to E=m(c)^2? Does it mean to say that if the ion is moving close to the speed of light it will possesses energy equivalent to its mass an the square of the speed of light? Why is this so since even a stationary mass will have energy according to E=m(c)^2?

Thanks for the help, these questions just got to me when I read your post and I do not have a deep understanding of relativity.

There most certainly is. The full equation for relativistic kinetic energy is given by;

E_{k} = \frac{m_{0}c^2}{\sqrt{1 - \frac{v^2}{c^2}}} - m_{0}c^2

Where m_{0} is the rest mass of the object. Regarding you question;

Why is this so since even a stationary mass will have energy according to E=m(c)^2?

See what happens to the above equation when you let v = 0.

E = mc2 takes into account both rest and kinetic energy; note however, that m is not the rest mass.

~H
 
Last edited:
Thanks H~ for the explanation.
 

Similar threads

Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 12 ·
Replies
12
Views
7K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
639
  • · Replies 8 ·
Replies
8
Views
2K
Replies
7
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K