Undergrad Calculating the specific heat capacity for the 2D Ising model

Click For Summary
SUMMARY

The forum discussion focuses on calculating the specific heat capacity for the 2D Ising model as presented in "Equilibrium Statistical Physics" by Plischke and Bergersen. The user encounters discrepancies in the derived expressions, particularly regarding the signs in front of terms involving K1(q) and E1(q). The calculations involve derivatives of q and the specific heat formula, leading to a conclusion that the user may have identified typographical errors in the book. Ultimately, the user asserts that a positive sign in front of K1(q) is necessary for the specific heat to yield a positive value near the critical temperature, T_c.

PREREQUISITES
  • Understanding of the 2D Ising model in statistical mechanics
  • Familiarity with the concepts of specific heat and thermodynamic derivatives
  • Knowledge of hyperbolic functions, particularly sinh and coth
  • Ability to manipulate mathematical expressions involving derivatives and limits
NEXT STEPS
  • Review the derivation of the specific heat capacity in statistical mechanics
  • Study the properties and applications of the elliptic function of the first kind
  • Explore the critical phenomena in phase transitions, particularly in the context of the Ising model
  • Investigate the implications of typographical errors in scientific literature and their impact on research
USEFUL FOR

Physicists, particularly those specializing in statistical mechanics, researchers studying phase transitions, and students seeking to understand the specific heat capacity in the context of the 2D Ising model.

julian
Science Advisor
Gold Member
Messages
860
Reaction score
365
TL;DR
I'm calculating the specific heat capacity. I nearly get the right answer. Is there a typo in the book?
So I'm looking at the book "Equilibrium Statistical physics" by Plischke and Bergersen. I'm doing the calculation of the specific heat of the 2D Ising model. I can't seen to quite get out the same expression as in the book - there are a coupe of minus signs that are different. I don't know if I have made a mistake or if the book has a typo. So here's the calculations that I did:

We have the identity

\begin{eqnarray}
\frac{d K_1 (q)}{d q} = \dfrac{E_1 (q)}{q (1 - q^2)} - \frac{K_1 (q)}{q} .
\nonumber
\end{eqnarray}

We now substitute in the explicit expression for q into this. The expression for q is

$$
q (K) = \dfrac{2 \sinh 2 K}{\cosh^2 2 K}
$$

implying

$$
q (1 - q^2) = \dfrac{2 \sinh 2 K}{\cosh^2 2 K} \left( 1 - \dfrac{4 \sinh^2 2 K}{\cosh^4 2 K} \right) = \dfrac{2 \sinh 2 K (1 - \sinh^2 2 K)^2}{\cosh^6 2 K}
$$

so

\begin{eqnarray}
\frac{d K_1 (q)}{d q} &=& \dfrac{E_1 (q)}{q (1 - q^2)} - \frac{K_1 (q)}{q}
\nonumber \\
&=& \dfrac{\cosh^6 2 K}{2 \sinh 2 K (1 - \sinh^2 2 K)^2} E_1 (q) - \dfrac{\cosh^2 2 K}{2 \sinh 2 K} K_1 (q)
\nonumber \\
\end{eqnarray}

We then have

\begin{eqnarray}
\frac{d K_1(q)}{d K} &=& \frac{d q}{d K} \frac{d K_1(q)}{d q}
\nonumber \\
&=& \dfrac{4 (1 - \sinh^2 2 K)}{\cosh^3 2 K} \left[ \dfrac{\cosh^6 2 K}{2 \sinh 2 K (1 - \sinh^2 2 K)^2} E_1 (q) - \dfrac{\cosh^2 2 K}{2 \sinh 2 K} K_1 (q) \right]
\nonumber \\
&=& \dfrac{2 \cosh^3 2 K}{\sinh 2 K (1 - \sinh^2 2 K)} E_1 (q) - \dfrac{2 (2 - \cosh^2 2 K)}{\cosh 2 K \sinh 2 K} K_1 (q)
\nonumber \\
&=& \dfrac{2 \coth 2 K \cosh^2 2 K}{1 - \sinh^2 2 K} E_1 (q) + 4 \coth 2 K (\tanh^2 2 K - 1) K_1 (q) + 2 \coth 2 K K_1 (q)
\nonumber \\
&=& \coth 2 K \left[ \dfrac{2 \cosh^2 2 K}{1 - \sinh^2 2 K} E_1 (q) + 2 (2 \tanh^2 2 K - 1) K_1 (q) \right]
\nonumber \\
\end{eqnarray}

The specific heat is given by

\begin{eqnarray}
\frac{1}{k_B} c (T) &=& \beta^2 \dfrac{\partial^2 \beta g(T)}{\partial \beta^2}
\nonumber \\
&=& \beta^2 \dfrac{\partial u(T)}{\partial \beta}
\nonumber
\end{eqnarray}

where

##
u (T) = - J \coth 2 K \left[ 1 + \dfrac{2}{\pi} (2 \tanh^2 2 K - 1) K_1 (q) \right]
##

Using this in the above expression for ##\frac{1}{k_B} c(T)##

\begin{eqnarray}
&\;& \frac{1}{k_B} c (T) = \beta^2 \frac{\partial}{\partial \beta} u (T)
\nonumber \\
&=& \beta^2 J \frac{d}{d K} \left( - J \coth 2 K \left[ 1 + \frac{2}{\pi} (2 \tanh^2 2 K - 1) K_1 (q) \right] \right)
\nonumber \\
&=& - \beta^2 J^2 \frac{d}{d K} \coth 2 K \left[ 1 + \frac{2}{\pi} (2 \tanh^2 2 K - 1) K_1 (q) \right]
\nonumber \\
&\;& - \beta^2 J^2 \coth 2 K \left[ \frac{8}{\pi} K_1 (q) \tanh 2 K \frac{d}{d K} \tanh 2 K \right]
- \beta^2 J^2 \coth 2 K \left[ \frac{2}{\pi} (2 \tanh^2 2 K - 1) \frac{d K_1 (q)}{d K} \right]
\nonumber \\
&=& - 2 \beta^2 J^2 (\coth^2 2 K - 1) \left[ 1 + \frac{2}{\pi} (2 \tanh^2 2 K - 1) K_1 (q) \right]
\nonumber \\
&\;& - \beta^2 J ^2 \coth 2 K \left[ \frac{16}{\pi} \tanh 2 K (1 - \tanh^2 2 K) K_1 (q) \right]
\nonumber \\
&\;& - \beta^2 J^2 \coth 2 K \left[ \frac{2}{\pi} (2 \tanh^2 2 K - 1) \coth 2 K \left( \dfrac{2 \cosh^2 2 K}{1 - \sinh^2 2 K} E_1 (q) + 2 (2 \tanh^2 2 K - 1) K_1 (q) \right) \right]
\nonumber \\
&=& - 2 \beta^2 J^2 (\coth^2 2 K - 1)
\nonumber \\
&\;& - \frac{4}{\pi} \beta^2 J^2 (\coth^2 2 K - 1) (2 \tanh^2 2 K - 1) K_1 (q)
\nonumber \\
&\;& - \frac{4}{\pi} (\beta J \coth 2 K)^2 (1 - \tanh^2 2 K) 4 \tanh^2 2 K K_1 (q)
- \frac{4}{\pi} (\beta J \coth 2 K)^2 (2 \tanh^2 2 K - 1)^2 K_1 (q)
\nonumber \\
&\;& - \frac{4}{\pi} (\beta J \coth 2 K)^2 \dfrac{(2 \tanh^2 2 K - 1) \cosh^2 2 K}{1 - \sinh^2 2 K} E_1 (q)
\nonumber \\
&=& - \frac{4}{\pi} (K \coth 2 K)^2 (1 - \tanh^2 2 K) \frac{\pi}{2}
\nonumber \\
&\;& - \frac{4}{\pi} (K \coth 2 K)^2 (1 - \tanh^2 2 K) (2 \tanh^2 2 K - 1) K_1 (q)
\nonumber \\
&\;& - \frac{4}{\pi} (K \cosh 2 K)^2 K_1 (q) + \frac{4}{\pi} (K \cosh 2 K)^2 E_1 (q)
\nonumber \\
&=& \frac{4}{\pi} (K \cosh^2 2 K)^2 \left\{ - K_1 (q) + E_1 (q) - (1 - \tanh^2 2 K) \left[ \frac{\pi}{2} + (2 \tanh^2 2 K - 1) K_1 (q) \right] \right\}
\nonumber
\end{eqnarray}

But the book says the answer is:

##
\frac{4}{\pi} (K \cosh^2 2 K)^2 \left\{ K_1 (q) - E_1 (q) - (1 - \tanh^2 2 K) \left[ \frac{\pi}{2} + (2 \tanh^2 2 K - 1) K_1 (q) \right] \right\}
##

Have I made a mistake or is there a typo in the book? (I think I have already found a couple of typos in the book).
 
Last edited:
Physics news on Phys.org
Have I written down the wrong formula for the specific heat? I think it should be:

##
\dfrac{1}{k_B} c (T) = \dfrac{1}{k_B} \dfrac{\partial }{\partial T} u (T) = \dfrac{1}{k_B} \dfrac{\partial \beta}{\partial T} \dfrac{\partial }{\partial \beta} u (T) = - \dfrac{1}{k_B} \dfrac{1}{k_B T^2} \dfrac{\partial }{\partial \beta} u (T) = - \beta^2 \dfrac{\partial }{\partial \beta} u (T) .
##

So that my expression becomes:

\begin{align*}
\dfrac{1}{k_B} c (T) = \frac{4}{\pi} (K \cosh^2 2 K)^2 \left\{ K_1 (q) - E_1 (q) + (1 - \tanh^2 2 K) \left[ \frac{\pi}{2} + (2 \tanh^2 2 K - 1) K_1 (q) \right] \right\}
\end{align*}

So there is still a different sign from the book's expression, but in front of the ##(1 - \tanh^2 2 K)## instead!

I think you need a positive sign in front of ##K_1 (q)## to get a positive value for the specific heat (calculated near the critical temperature, ##T_c##, defined by ##\sinh \dfrac{2J}{k_B T_c} = 1##) :

The Elliptic function of the first kind has the asymptotic behaviour:

##
K_1 (q) \sim - \frac{1}{2} \ln | 1 - q | \quad \text{as } q \rightarrow 1^-
##

Say ##C## is defined by ##\sinh C = 1##, then we have the expansions:

\begin{align*}
\sinh (C + x) &= \sinh C+ x \cosh C + \dfrac{x^2}{2!} \sinh C + \cdots = 1 + \sqrt{2} x + \dfrac{x^2}{2} + \cdots
\nonumber \\
\cosh (C + x) &= \cosh C + x \sinh C + \dfrac{x^2}{2!} \cosh C + \cdots = \sqrt{2} + x + \dfrac{1}{\sqrt{2}} x^2 + \cdots
\end{align*}

so that

\begin{align*}
q (C + x) &= \dfrac{2 \sinh (C+ x)}{\cosh^2 (C + x)}
\nonumber \\
&= \dfrac{2 (1 + \sqrt{2} x + x^2 + \cdots )}{(\sqrt{2} + x + \dfrac{1}{\sqrt{2}} x^2 + \cdots)^2} = \dfrac{1 + \sqrt{2} x + \cdots }{1 + \sqrt{2} x + \cdots}
\nonumber \\
&= (1 + \sqrt{2} x + \cdots ) (1 - \sqrt{2} x + \cdots )
\nonumber \\
&= 1 - 2 x^2 + \cdots
\end{align*}

Using this we approximate ##q (K)## for temperatures, ##T##, near to the critical temperature, ##T_c##. We have the definition ##2 K = \dfrac{2J}{k_B T}##, so that:

##
q (K) = q \left( \dfrac{2 J}{k_B T_c} \dfrac{1}{1 + \dfrac{T - T_c}{T_c}} \right) \approx q \left ( \dfrac{2 J}{k_B T_c} \left( 1 - \dfrac{T - T_c}{T_c} \right) \right) \approx 1 - 2 \left( \dfrac{2 J}{k_B T_c} \right)^2 \left( 1 - \dfrac{T}{T_c} \right)^2
##

where we assumed that ##T > T_c##.

##
q (K) = q \left( \dfrac{2 J}{k_B T_c} \dfrac{1}{1 - \dfrac{T_c - T}{T_c}} \right) \approx q \left ( \dfrac{2 J}{k_B T_c} \left( 1 + \dfrac{T_c - T}{T_c} \right) \right) \approx 1 - 2 \left( \dfrac{2 J}{k_B T_c} \right) \left( 1 - \dfrac{T}{T_c} \right)^2
##

where we assumed that ##T < T_c##. Using this in the asymptotic expression for ##K_1 (q)## we have

##
K_1 (q) \sim - \frac{1}{2} \ln | 1 - q | \sim - \ln \left| 1 - \dfrac{T}{T_c} \right|
##

and we have for the specific heat

##
\dfrac{1}{k_B} c (T) \approx - \dfrac{2}{\pi} \left( \dfrac{2J}{k_B T_C} \right)^2 \ln \left| 1 - \dfrac{T}{T_c} \right| + const
##

Which is the expression given in the book for the asymptotic behaviour of ##\dfrac{1}{k_B} c (T)##. Importantly it is positive.
 
Last edited:
Thread 'Unexpected irregular reflection signal from a high-finesse cavity'
I am observing an irregular, aperiodic noise pattern in the reflection signal of a high-finesse optical cavity (finesse ≈ 20,000). The cavity is normally operated using a standard Pound–Drever–Hall (PDH) locking configuration, where an EOM provides phase modulation. The signals shown in the attached figures were recorded with the modulation turned off. Under these conditions, when scanning the laser frequency across a cavity resonance, I expected to observe a simple reflection dip. Instead...

Similar threads

  • · Replies 0 ·
Replies
0
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 21 ·
Replies
21
Views
1K