# Calculating the stopping distance of a car sliding down an incline.

## Homework Statement

When a car is traveling at 22 m/s on level ground, the stopping distance is found to be 22 m. This distance is measured by pushing hard on the brakes so that the wheels skid on the pavement. The same car is driving at the same speed down an incline that makes an angle of 7.8° with the horizontal direction. What is the stopping distance now, as measured along the incline?

## Homework Equations

v^2 + v(i) + 2a (delta x)

## The Attempt at a Solution

Here's my weak line of reasoning: I used the above equation to find the acceleration since the stopping distance for the first case is known. Then I calculated a(net) for that same acceleration for the second case because I assumed that when skidding down an incline the acceleration is basically the same as when there is no incline except this time is an cos and sin component. Then I plugged back the new acceleration into the same equation to get delta x (stopping distance) for the incline. I think I got this wrong because there is kinetic friction involved in this problem. I just can't seem to calculated the forces associated with F(k) due to the limited amount of information given.