Calculating Time Evolution of Density Matrix

  • #1
10
0
Hi,

I am trying to calculate the time evolution of a density matrix. Like if there is a mixed state with 50% of |x, 0> and 50% of |y, 0>. After time t due to time evolution, the kets become:

|x,t>= e^(-i/h Ht) |x,0> and so on.

Is it ok to use these kets instead of the original ket to calculate the density matrix after time t? Or is there another method to do it?
 

Answers and Replies

  • #2
Hi,

I am trying to calculate the time evolution of a density matrix. Like if there is a mixed state with 50% of |x, 0> and 50% of |y, 0>. After time t due to time evolution, the kets become:

|x,t>= e^(-i/h Ht) |x,0> and so on.

Is it ok to use these kets instead of the original ket to calculate the density matrix after time t? Or is there another method to do it?

Yes, but don't forget to take the Hermitian conjugate:

<x,t| = <x,0| e^(i/h Ht)

So, you see that if you do this the density matrix evolves in time according to the unitary time evolution:

rho(t) = U rho(0) U-dagger

U = e^(-i/hbar H t)
 

Suggested for: Calculating Time Evolution of Density Matrix

Replies
4
Views
449
Replies
4
Views
414
Replies
1
Views
627
Replies
11
Views
735
Replies
1
Views
407
2
Replies
63
Views
3K
Replies
12
Views
1K
Replies
27
Views
1K
Replies
2
Views
410
Back
Top