Calculating Train Deceleration: Kid's Free Fall Time

AI Thread Summary
The discussion centers on calculating the time and distance a child falls from a decelerating train. The initial calculation for free fall time is established as 0.8 seconds, based on a height of 3 meters. Participants explore the equations of motion for both the child and the train, questioning the validity of assuming the train's initial velocity is zero. It is clarified that working in a stationary frame simplifies the problem, as the child's horizontal motion can be treated independently of the train's initial speed. Ultimately, the conclusion is that the initial velocity of the train does not affect the final distance calculation of 1.5 meters.
ejacques
Messages
3
Reaction score
0
Homework Statement
when a high-speed train suddenly begins to decelerate at -5 (m/s^2), a kid sleeping on the upper bunk 3 meter above the floor falls off. where does he land?
Relevant Equations
y=-0.5*g*t^2
I think, since the train is decelerate the kid will fall off at free falling. the time for that is:
y=0.5*9.8*t2 ⇒ t=√(2*y/g)=√(2*3/9.8)=0.8sec.

Now i think i need to find what is the distance the train is doing in this time, but i can't figure this out.
 
Physics news on Phys.org
How about writing equations for the positions of the kid and the train as a function of time? Take t = 0 when the deceleration starts. Unless the kid falls out an open window, it should land on the floor. The question is how far horizontally from the bed.
 
Work in a frame in which the train is stationary. The kid is then initially at rest at (x,y) = (0,3); how does that change when the train starts to decelerate?

Or you can work in an inertial frame in which the train accelerates to the left from rest at 5\, \mathrm{m}\,\mathrm{s}^{-2}.
 
I still don't get how i can find the train initial velocity, it looks like i need it for the position equ. x(t) of the kid.
why i can work in a frame where the train is stationary?

If i do assume the initial velocity is 0 i do get the answer of 1.5 meters which is the answer given.
again, i don't get why this assumption is valid.
 
ejacques said:
I still don't get how i can find the train initial velocity, it looks like i need it for the position equ. x(t) of the kid.
why i can work in a frame where the train is stationary?

If i do assume the initial velocity is 0 i do get the answer of 1.5 meters which is the answer given.
again, i don't get why this assumption is valid.
So, run the equations with an unknown initial velocity ##u## for both train and kid, and see what happens.
 
ejacques said:
I still don't get how i can find the train initial velocity, it looks like i need it for the position equ. x(t) of the kid.
why i can work in a frame where the train is stationary?

If i do assume the initial velocity is 0 i do get the answer of 1.5 meters which is the answer given.
again, i don't get why this assumption is valid.
@pasmith gave you two approaches: a non inertial frame in which the train is stationary, or an inertial frame in which the train is initially stationary.

The second may be easier to understand. Imagine you are driving along next to the train at the same velocity. The decelerates but you don't.
You see the boy as falling vertically as the train accelerates backwards. This shows the initial velocity of the train is not relevant.

In the frame of the decelerating train, objects behave as though there is a kind of horizontal gravity in the forward direction. The train is stationary despite the frictional force. The boy will accelerate horizontally at 5m/s2 (as well as vertically).

Of course, you could also work in the ground frame, putting the initial velocity of the train as an unknown. In the ensuing algebra, that unknown will cancel out.
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top