Calculating turbine RPM in a pipe with known air velocity and diameter

AI Thread Summary
To calculate turbine RPM in a closed pipe with known air velocity and diameter, it's essential to consider the resistive torque at the turbine's shaft, as lower resistance leads to higher RPM. The type of turbine, whether a propeller or fan blade, significantly influences RPM, particularly the pitch of the blades. A detailed calculation would involve modeling the lift on each blade and accounting for the dynamics of spinning blades affecting incoming fluid. Additionally, the interaction between the blades and airflow must be factored into the calculations. This discussion highlights the complexities involved in accurately determining turbine RPM in such conditions.
matth6197
Messages
1
Reaction score
1
Hello,

I am trying to calculate the turbine RPM for a turbine in a closed pipe. I know the air velocity and pipe diameter. Can this be done?
 
Engineering news on Phys.org
Welcome, @matth6197 !

The lighter the resistive torque or resistance at the shaft of the turbine the higher its rotational speed should be.
 
Is your turbine just a propeller or a fan blade. If so, then the pitch of the blades is the most significant factor in RPM.
 
  • Like
Likes Al-Layth and russ_watters
I hope somebody posts a detailed answer for how this calculation is done. I am dealing with a similar problem for wind turbines.

I expect you will somehow need to calculate the lift on each turbine blade multiply by the number of them and model it as a circular motion problem. but then you also need to take into account the change of lift per blade due to the fact the blade will spin, (whereas it was stationary at first) and also the effects of the spinning blades on the incoming fluid as well. All issues currently beyond my modelling abilities
 
Here's a video by “driving 4 answers” who seems to me to be well versed on the details of Internal Combustion engines. The video does cover something that's a bit shrouded in 'conspiracy theory', and he touches on that, but of course for phys.org, I'm only interested in the actual science involved. He analyzes the claim of achieving 100 mpg with a 427 cubic inch V8 1970 Ford Galaxy in 1977. Only the fuel supply system was modified. I was surprised that he feels the claim could have been...
Thread 'Turbocharging carbureted petrol 2 stroke engines'
Hi everyone, online I ve seen some images about 2 stroke carbureted turbo (motorcycle derivation engine). Now.. In the past in this forum some members spoke about turbocharging 2 stroke but not in sufficient detail. The intake and the exhaust are open at the same time and there are no valves like a 4 stroke. But if you search online you can find carbureted 2stroke turbo sled or the Am6 turbo. The question is: Is really possible turbocharge a 2 stroke carburated(NOT EFI)petrol engine and...
Back
Top