Calculation of Electrostatic Potential Given a Volume Charge Density

Click For Summary
SUMMARY

The discussion focuses on calculating the electrostatic potential \( V(\mathbf{r}) \) given a volume charge density \( \rho \) using integral equations. The total charge was determined to be zero using the equation \( Q=\int_{\mathbb{R}^3} \rho \, d^3\mathbf{r} \). The potential was derived from the equation \( V(\mathbf{r})=\frac{1}{4\pi \epsilon _0}\int_{\Gamma }\frac{\rho (\mathbf{r'})}{\left \| \mathbf{r-r'} \right \|}d^3\mathbf{r'} \), leading to a complex evaluation involving integrals and the law of cosines. The final potential expression is \( V(\mathbf{r})=A\frac{e^{-\lambda r}}{r} \), with the divergence of the electric field yielding \( \nabla\cdot \mathbf{E}=-A\frac{\lambda ^2e^{-\lambda r}}{r} \).

PREREQUISITES
  • Understanding of electrostatics and potential theory
  • Familiarity with integral calculus and multivariable integration
  • Knowledge of Dirac delta functions and their properties
  • Proficiency in vector calculus, particularly divergence and gradient operations
NEXT STEPS
  • Study the application of the Dirac delta function in electrostatics
  • Learn about the derivation and implications of Gauss's law in electrostatics
  • Explore advanced techniques in evaluating multiple integrals in physics
  • Investigate the relationship between electric fields and potentials in different coordinate systems
USEFUL FOR

Students and professionals in physics, particularly those specializing in electromagnetism, as well as researchers working on electrostatic potential calculations and related mathematical techniques.

cwill53
Messages
220
Reaction score
40
Homework Statement
This problem is a rehash of Problem 2.50 of the book Introduction to Electrodynamics by Griffiths.

A volume charge density of some configuration is
$$\rho (r)=\epsilon _0A\left [ 4\pi \delta ^3(\mathbf{r})-\frac{\lambda ^2}{r}e^{-\lambda r} \right ]$$

where ##A## and ##\lambda ## are positive constants, and ##r## is the distance from origin in spherical coordinates.
(a) Find the total charge of this configuration.
(b) Calculate the potential due to this ##\rho (r)## by using the expression for the potential
due to a continuous charge distribution.
(c) Calculate the electric field ##E## directly from the potential and verify that the
differential form of Gauss’s law is obeyed.
Relevant Equations
$$Q=\int_{\mathbb{R}^3}^{}\rho \, d^3\mathbf{r}$$

$$V(\mathbf{r})=\frac{1}{4\pi \epsilon _0}\int_{\Gamma }^{}\frac{\rho (\mathbf{r'})}{\left \| \mathbf{r-r'} \right \|}d^3\mathbf{r'}$$

I know for sure that the desired potential is

$$V(\mathbf{r})=A\frac{e^{-\lambda r}}{r}$$
Part (a) was simple, after applying

$$Q=\int_{\mathbb{R}^3}^{}\rho \, d^3\mathbf{r}$$

I found that the total charge of the configuration was zero.

Part (b) is where the difficulties arise for me. I applied

$$V(\mathbf{r})=\frac{1}{4\pi \epsilon _0}\int_{\Gamma }^{}\frac{\rho (\mathbf{r'})}{\left \| \mathbf{r-r'} \right \|}d^3\mathbf{r'}$$

to the given charge distribution. Here's my work.

$$V(\mathbf{r})=\frac{1}{4\pi \epsilon_0}\epsilon _0A\left [ 4\pi \int_{\mathbb{R}^3}^{}\frac{\delta ^3(\mathbf{r})}{\left \| \mathbf{r-r'} \right \|}d^3\mathbf{r}-\int_{0}^{2\pi }d\phi \int_{0}^{\pi }\sin\theta d\theta \int_{0}^{\infty }\frac{\lambda ^2e^{-\lambda r'}}{r'\left \| \mathbf{r-r'} \right \|}r'^2dr' \right ]$$

$$\int_{\mathbb{R}^3}^{}\frac{\delta ^3(\mathbf{r})}{\left \| \mathbf{r-r'} \right \|}d^3\mathbf{r}=\frac{1}{\left \| \mathbf{r} \right \|}=\frac{1}{r}$$

In order to tackle the second integral I tried to use the law of cosines and stipulate that ##\mathbf{r}## is directed along the z-axis. I included the pictures of my work.

$$\int_{0}^{2\pi }d\phi \int_{0}^{\pi }\sin\theta d\theta \int_{0}^{\infty }\frac{\lambda ^2e^{-\lambda r'}}{r'\left \| \mathbf{r-r'} \right \|}r'^2dr'\rightarrow \int_{0}^{2\pi }d\phi\int_{0}^{\infty }\int_{0}^{\pi }\frac{\lambda ^2r'e^{-\lambda r'}}{(r^2+r'^2-2rr'\cos\theta )^{1/2}}\sin\theta d\theta dr'$$

Given that ##\int_{0}^{2\pi }d\phi =2\pi ##

The problem was evaluation of the integral

$$\int_{0}^{\infty }\int_{0}^{\pi }\frac{\lambda ^2r'e^{-\lambda r'}}{(r^2+r'^2-2rr'\cos\theta )^{1/2}}\sin\theta d\theta dr'$$$$\int_{0}^{\infty }\int_{0}^{\pi }\frac{\lambda ^2r'e^{-\lambda r'}}{(r^2+r'^2-2rr'\cos\theta )^{1/2}}\sin\theta d\theta dr'=\int_{0}^{\infty }\lambda ^2r'e^{-\lambda r}\left [ \int_{0}^{\pi }\frac{\sin\theta }{(r^2+r'^2-2rr'\cos\theta )^{1/2}}d\theta \right ]dr'$$

Using the substitution ##u=r^2+r'^2-2rr'\cos\theta##, I was able to integrate with respect to ##\theta## and arrive at

$$\int_{0}^{\infty }\lambda ^2r'e^{-\lambda r'}\times \frac{1}{rr'}\left \{ \sqrt{r'^2+r^2+2rr'}-\sqrt{r'^2+r^2-2rr'} \right \}dr'$$

$$\frac{\lambda ^2}{r}\left [ \int_{0}^{\infty }e^{-\lambda r'}\sqrt{r'^2+r^2+2rr'}dr'-\int_{0}^{\infty }e^{-\lambda r'}\sqrt{r'^2+r^2-2rr'}dr' \right ]$$

Note that I know for sure that the desired potential is

$$V(\mathbf{r})=A\frac{e^{-\lambda r}}{r}$$

However, the last integrals I arrived at, as far as I know, don't yield the answer I'm looking for. The exponential factor ends up canceling out entirely.
 
Physics news on Phys.org
image_6487327 (9).JPG

image_6487327 (10).JPG

image_6487327 (11).JPG
 
You need to be careful with the second integral $$I_2=\int_{0}^{\infty }e^{-\lambda r'}\sqrt{r'^2+r^2-2rr'}dr'$$ Remember that you integrate from zero to infinity, in which case ##r'## can be smaller or greater than ##r##. Then depending on where ##r'## is,
$$+\sqrt{r'^2+r^2-2rr'}=+\sqrt{(r-r')^2}=
\begin{cases}
-(r-r') & \text{if } r < r' \\
+(r-r') & \text{if } r \geq r'
\end{cases}$$ which means that you need to split the integral into two, one with limits from zero to ##r## and one with limits from ##r## to infinity. The first integral does not have this wrinkle because ##+\sqrt{r'^2+r^2+2rr'}=+(r+r').##
 
  • Like
Likes   Reactions: cwill53, Orodruin and topsquark
kuruman said:
You need to be careful with the second integral $$I_2=\int_{0}^{\infty }e^{-\lambda r'}\sqrt{r'^2+r^2-2rr'}dr'$$ Remember that you integrate from zero to infinity, in which case ##r'## can be smaller or greater than ##r##. Then depending on where ##r'## is,
$$+\sqrt{r'^2+r^2-2rr'}=+\sqrt{(r-r')^2}=
\begin{cases}
-(r-r') & \text{if } r < r' \\
+(r-r') & \text{if } r \geq r'
\end{cases}$$ which means that you need to split the integral into two, one with limits from zero to ##r## and one with limits from ##r## to infinity. The first integral does not have this wrinkle because ##+\sqrt{r'^2+r^2+2rr'}=+(r+r').##
Thank you so much.
 
kuruman said:
You need to be careful with the second integral $$I_2=\int_{0}^{\infty }e^{-\lambda r'}\sqrt{r'^2+r^2-2rr'}dr'$$ Remember that you integrate from zero to infinity, in which case ##r'## can be smaller or greater than ##r##. Then depending on where ##r'## is,
$$+\sqrt{r'^2+r^2-2rr'}=+\sqrt{(r-r')^2}=
\begin{cases}
-(r-r') & \text{if } r < r' \\
+(r-r') & \text{if } r \geq r'
\end{cases}$$ which means that you need to split the integral into two, one with limits from zero to ##r## and one with limits from ##r## to infinity. The first integral does not have this wrinkle because ##+\sqrt{r'^2+r^2+2rr'}=+(r+r').##
I'm wondering how I should answer part (c) of this question to get something equivalent to the original charge density divided by the vacuum permittivity for the divergence of the electric field.

After taking your advice, I got that

$$V(\mathbf{r})=A\frac{e^{-\lambda r}}{r}$$

$$\mathbf{E}=-\nabla V=-\hat{\mathbf{r}}\frac{\partial V}{\partial r}(r)=A\frac{e^{-\lambda r}}{r^2}(\lambda r+1)\hat{\mathbf{r}}$$

$$\nabla\cdot \mathbf{E}=\frac{1}{r^2}\frac{\partial }{\partial r}(r^2E_r)=\frac{A}{r^2}\frac{\partial }{\partial r}\left ( \frac{r^2}{r^2}e^{-\lambda r} (\lambda r+1)\right )=-A\frac{\lambda ^2e^{-\lambda r}}{r}$$

But the original charge density is

$$\rho (r)=\epsilon _0A\left [ 4\pi \delta ^3(\mathbf{r})- \frac{\lambda ^2}{r}e^{-\lambda r}\right ]$$
 
cwill53 said:
$$\nabla\cdot \mathbf{E}=\frac{1}{r^2}\frac{\partial }{\partial r}(r^2E_r)=\frac{A}{r^2}\frac{\partial }{\partial r}\left ( \frac{r^2}{r^2}e^{-\lambda r} (\lambda r+1)\right )=-A\frac{\lambda ^2e^{-\lambda r}}{r}$$
You are missing the delta function which is zero everywhere except at the origin. Your expression for the divergence is good except at the origin. Is ##\dfrac{r^2}{r^2}=1## at ##r=0##? I think not.
 
  • Like
Likes   Reactions: cwill53
kuruman said:
You are missing the delta function which is zero everywhere except at the origin. Your expression for the divergence is good except at the origin. Is ##\dfrac{r^2}{r^2}=1## at ##r=0##? I think not.
Right, right, thanks a ton.
 

Similar threads

Replies
11
Views
1K
  • · Replies 9 ·
Replies
9
Views
842
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
1K
Replies
3
Views
2K
Replies
3
Views
555
  • · Replies 9 ·
Replies
9
Views
2K
Replies
5
Views
1K