Calculation of the commutator of the hamiltonian and position

Click For Summary
SUMMARY

The discussion centers on the calculation of the commutator of the Hamiltonian operator $H$ and position operator $x_i$, specifically $[H,x_i]$. The calculation is derived using the Hamiltonian $H = \sum_j \frac{{\mathbf p}_j^2}{2m_j} + V({\mathbf x})$ and the canonical commutation relation $[p_{j},x_{i}] = -i\hbar\delta_{ji}$. The identity $[AB,C] = A[B,C] + [A,C]B$ is applied to express $[p_{j}^{2},x_{i}]$ in terms of the canonical relation, leading to the conclusion that $[H,x_i] = -\frac{i \hbar p_i}{m}$. The discussion emphasizes the importance of recognizing operators in quantum mechanics.

PREREQUISITES
  • Understanding of quantum mechanics and operator theory
  • Familiarity with Hamiltonian mechanics
  • Knowledge of canonical commutation relations
  • Proficiency in mathematical manipulation of operators
NEXT STEPS
  • Study the derivation of canonical commutation relations in quantum mechanics
  • Learn about the role of operators in quantum mechanics, focusing on position and momentum operators
  • Explore the implications of the Hamiltonian in quantum systems
  • Investigate the concept of operator representations, including position and momentum bases
USEFUL FOR

Students and professionals in quantum mechanics, physicists working with Hamiltonian systems, and anyone interested in the mathematical foundations of quantum theory.

Fantini
Gold Member
MHB
Messages
267
Reaction score
0
The book calculates the commutator $[H,x_i]$ as
$$[H,x_i] = \left[ \sum_j \frac{p_j^2}{2m}, x_i \right] = \frac{2}{2m} \sum_j p_j \frac{\hbar}{i} \delta_{ij} = - \frac{i \hbar p_i}{m},$$
where the hamiltonian operator $H$ is
$$H = \sum_j \frac{{\mathbf p}_j^2}{2m_j} + V({\mathbf x}).$$
The book claims to use the property of commutators that
$$[AB,C] = A[B,C] + [A,C]B,$$
but I don't see how that applies.
 
Physics news on Phys.org
Hey Fantini,

The author is using the identity

$$[AB,C] = A[B,C] + [A,C]B$$

to write the commutator $$[p_{j}^{2},x_{i}]$$ in terms of the (negative) canonical commutation relation

$$[p_{j},x_{i}] = -ih\delta_{ji}$$

Do this by taking $$A = B = p_{j}$$ and $$C = x_{i}$$.

Let me know if anything is unclear/not quite right!
 
GJA said:
Hey Fantini,

The author is using the identity

$$[AB,C] = A[B,C] + [A,C]B$$

to write the commutator $$[p_{j}^{2},x_{i}]$$ in terms of the (negative) canonical commutation relation

$$[p_{j},x_{i}] = -ih\delta_{ji}$$

Do this by taking $$A = B = p_{j}$$ and $$C = x_{i}$$.

Let me know if anything is unclear/not quite right!
This is unclear: $$[p_j,x_i] = -i \hbar \delta_{ji}.$$ How do you show this? When I do it by the definition all I get is $$[p_j, x_i] = \frac{\hbar}{i} \left(\delta_{ij} - x_i \frac{\partial}{\partial x_j} \right).$$
 
Hi Again Fantini,

Knowing the canonical commutation relation is essential in Quantum Mechanics, so it's good to understand where it comes from. I'll give two answers - the first is probably what you're looking for, the second is a more "advanced" method (I don't mean more difficult, I just mean it's probably not something you've encountered yet).

1) There are some subtleties to using what you called "the definition" in your computation. In no particular order the following is all going on behind the scenes:

  • In Quantum Mechanics position and momentum are operators.
    • There is a slight error in your computation of the commutator and it stems from not thinking of $$x_{i}$$ as an operator.
  • You are implicitly using what is called the position basis/representation of quantum mechanics when you write $$p_{j} "=" \frac{h}{i}\frac{\partial}{\partial x_{j}}$$. Furthermore, when working in the position space basis, the operator $$x_{i}$$ is a multiplication operator (it is not simply a real coordinate); essentially $$x_{i}$$ sitting alone is meaningless, what does have meaning is something of the form $$x_{i}f({\bf x})$$, because $$x_{i}$$ is acting as an operator on $$f$$ via multiplication.
    • Note: There is no compulsory need to work in the position basis. In fact, there is something called the momentum basis/representation, and in the momentum basis $$p_{j}\neq \frac{\partial}{\partial x_{j}}$$. I only bring this up to emphasize that you are making a choice when you write $$p_{j} "="\frac{h}{i}\frac{\partial}{\partial x_{j}}$$ (i.e. choosing between position or momentum space).
  • This is how we put what I've mentioned above to work to correct the commutator identity: we take an arbitrary test function $$f({\bf x})$$ and compute
$$\begin{align*}

[p_{j},x_{i}]f &= p_{j}x_{i}f-x_{i}p_{j}f\\
&=\frac{h}{i}\frac{\partial(x_{i}f)}{\partial x_{j}}-x_{i}\frac{h}{i}\frac{\partial f}{\partial x_{j}}\\
&=\delta_{ij}\frac{h}{i}f+x_{i}\frac{h}{i}\frac{\partial f}{\partial x_{j}}-x_{i}\frac{h}{i}\frac{\partial f}{\partial x_{j}}\\
&=\frac{h}{i}\delta_{ji}f\end{align*}$$Since $$f$$ was arbitrary, the commutator operator satisfies

$$[p_{j},x_{i}]=-ih\delta_{ji}$$

I could have just said that a product rule was missing from your calculation, but that would not have been any fun :p.

2) The second explanation can be found in most Intermediate Quantum Mechanics texts, and stems from the fact that momentum is what is known as the "generator of space translations."

Let me know if you're still unclear on this.
 
Thank you! It's all clear now. :)
 
GJA said:
Hi Again Fantini,

Knowing the canonical commutation relation is essential in Quantum Mechanics, so it's good to understand where it comes from. I'll give two answers - the first is probably what you're looking for, the second is a more "advanced" method (I don't mean more difficult, I just mean it's probably not something you've encountered yet).

1) There are some subtleties to using what you called "the definition" in your computation. In no particular order the following is all going on behind the scenes:

  • In Quantum Mechanics position and momentum are operators.
    • There is a slight error in your computation of the commutator and it stems from not thinking of $$x_{i}$$ as an operator.
  • You are implicitly using what is called the position basis/representation of quantum mechanics when you write $$p_{j} "=" \frac{h}{i}\frac{\partial}{\partial x_{j}}$$. Furthermore, when working in the position space basis, the operator $$x_{i}$$ is a multiplication operator (it is not simply a real coordinate); essentially $$x_{i}$$ sitting alone is meaningless, what does have meaning is something of the form $$x_{i}f({\bf x})$$, because $$x_{i}$$ is acting as an operator on $$f$$ via multiplication.
    • Note: There is no compulsory need to work in the position basis. In fact, there is something called the momentum basis/representation, and in the momentum basis $$p_{j}\neq \frac{\partial}{\partial x_{j}}$$. I only bring this up to emphasize that you are making a choice when you write $$p_{j} "="\frac{h}{i}\frac{\partial}{\partial x_{j}}$$ (i.e. choosing between position or momentum space).
  • This is how we put what I've mentioned above to work to correct the commutator identity: we take an arbitrary test function $$f({\bf x})$$ and compute
$$\begin{align*}

[p_{j},x_{i}]f &= p_{j}x_{i}f-x_{i}p_{j}f\\
&=\frac{h}{i}\frac{\partial(x_{i}f)}{\partial x_{j}}-x_{i}\frac{h}{i}\frac{\partial f}{\partial x_{j}}\\
&=\delta_{ij}\frac{h}{i}f+x_{i}\frac{h}{i}\frac{\partial f}{\partial x_{j}}-x_{i}\frac{h}{i}\frac{\partial f}{\partial x_{j}}\\
&=\frac{h}{i}\delta_{ji}f\end{align*}$$Since $$f$$ was arbitrary, the commutator operator satisfies

$$[p_{j},x_{i}]=-ih\delta_{ji}$$

I could have just said that a product rule was missing from your calculation, but that would not have been any fun :p.

2) The second explanation can be found in most Intermediate Quantum Mechanics texts, and stems from the fact that momentum is what is known as the "generator of space translations."

Let me know if you're still unclear on this.

Normally, I wouldn't clutter up a thread with "useless" posts, but I just have to comment on this post: this is an incredibly lucid, well-thought-out presentation. Excellent work, GJA!
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K