1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Calculus Made Easy and then Courant/Spivak?

  1. Dec 1, 2009 #1
    For the past year, I have self-study math, algebra I/II, geometry. I've just gone through a few books covering trigonometry, and now I want to move on to calculus.

    If I was to learn from Calculus Made Easy, will I be able to move on to books such as Courant and Spivak? I hear from reading several threads on here that says the two author focuses more on theory - the why's? So should I pick up Calculus Made Easy by Silvanus Phillips and Calculus by Michael Spivak/Differential and Integral Calculus by Richard Courant. Or is there more I'll have to know after Trigonometry and before Calculus?

    Will I know enough after Calculus Made Easy to understand Courant/Spivak's book? I also plan to find some kind of supplemental material to help me along Courant/Spivak's. Like schaum's outline of calculus or something similar.

    Thank you,
  2. jcsd
  3. Dec 1, 2009 #2
    I'm self studying calc. right now as well, out of Kline's book, mainly.

    The Phillips book will give you the principles, but from what I've seen in it (Going off Google Book's and Amazon's previews), it seems like a bit of a jump if you dive right into Spivak or Courant afterwards.

    Make sure you've got algebra II and trig down pretty solid before moving on to calc, your efficiency in calculus will be dependent upon those two. Maybe go down to a library or something similar and look through some pre-calc texts to make sure you've got the prereqs. down.

    Proofs are fairly essential as well, that's what I struggle most with.

    Also, MIT has a bunch of calculus lectures available on youtube (Search for MIT OCW 18.01). They're pretty nice to have alongside a book.
  4. Dec 2, 2009 #3
  5. Dec 18, 2009 #4
    you can try for yourself about spivak book ,i have been reading this book ..for about 1 week ,just finish 2 chapter .. nice reading by the way ,and i love how spivak explain the topic ,its very detail ..but the problem is very HARD
  6. Dec 19, 2009 #5
    I would say that if you're worried about prerequisite knowledge for Spivak, it's not calculus that you really need (Spivak introduces calculus from first principles), it should be logic and proof that you really need to work on.

    Spivak blends computational problems -- ones that you're used to from grade school, problems that end in numbers for answers -- with conceptual and proof-based problems, which are the heart of the book. He mentions in his bibliography that he has borrowed problems from Baby Rudin, an analysis book.

    It's perhaps a different type of textbook then you have probably seen before. If read right, you should spend just as much time reading the section and trying to prove the theorems on your own before attempting the problem section.
  7. Dec 20, 2009 #6
    If you plan on taking higher math courses after calculus or majoring in math in the future, I would recommend starting with Spivak. It's a basic analysis text, which means you will be learning calculus through a bottom-up approach, starting from the axioms of the real numbers (well, most of them). It's definitely hard, since Spivak expects the text to be the reader's first encounter with rigorous mathematics in general. I would recommend learning a little set theory beforehand (look up naive set theory on wikipedia) and some proof-writing articles (do a search on this forum, here is the thread that helped me a lot: https://www.physicsforums.com/showthread.php?t=166996). Of course Spivak doesn't assume you know everything about proof-writing since you'll develop these skills as you work through the text, but you should learn the basics.

    If you just want to understand the basics of calculus without worrying too much about the theory, I would recommend Lang's First Course in Calculus. The standard text is Stewart, but Lang is exceptionally clear and concise. He builds the intuition for the subject, but also proves the fundamental results in calculus. The more theoretical aspects of calculus are usually relegated to the appendix.
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook