Can a Group Be Proven Infinite with a Single Formula?

  • Thread starter Thread starter sairalouise
  • Start date Start date
  • Tags Tags
    Group Infinite
sairalouise
Messages
10
Reaction score
0
I'm trying to show that there is not one sentence (formula) that if a group satisfies this formula it is equivalent to the group being infinite. I can show this in a hap hazard way analogous to the same problem in the empty language , but how do you use the fact that the model is a group and there are arbitrarily large groups?
 
Physics news on Phys.org
Let s be a sentence such that for all groups G, G models s iff G is infinite. Then a group G models ~s iff G is finite. So every finite group models ~s, and so

{~s} U {axioms of group theory}

has arbitrarily large finite models (since there are arbitrarily large finite groups). But a standard compactness argument yields that

{~s} U {axioms of group theory}

has an infinite model G which would be a group that models both s and ~s, contradiction.
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top