Can a turbo expander convert more heat to work than a piston expander?

  • Thread starter Thread starter MysticDream
  • Start date Start date
AI Thread Summary
A turbo expander operates by converting high-velocity gas into work, reducing its temperature and pressure, while a piston expander uses pressurized gas to do work on a piston. The discussion centers on which system can extract more heat and perform more work at the same exit pressure and temperature. The piston expander's adiabatic expansion formula suggests it can achieve maximum work and the lowest exit temperature for a given pressure. In contrast, the turbo expander may allow for more work by converting heat and pressure into kinetic energy, although the exact formula for this is still being explored. Ultimately, the goal is to maximize work output while maintaining a specific exit pressure for downstream processes.
MysticDream
Messages
112
Reaction score
9
TL;DR Summary
Trying to get a better understanding of adiabatic expansion
A turbo expander is a turbine moved by high velocity gas hitting it's blades and doing work, reducing it's temperature and pressure. A cylinder-piston expander uses pressurized and/or heated gas to do work on a piston reducing it's temperature and pressure. Let's say in both cases we have the same initial pressure, temperature, and exit pressure. In the case of the turbo, it's pressure and temp is it's stagnation point. The exit velocity is low enough to assume an approximate stagnation condition in both cases.

My question is, in which case can we extract the maximum amount of heat (and do the most amount of work) so that the temperature is lowest for the same exit pressure? So far, in the case of the cylinder-piston expander, the formula for adiabatic expansion seems to give the maximum amount of work that can be done and the lowest temperature that can be reached for a desired exit pressure. If I desired a lower exit temperature, it cannot be done unless I expand to a lower pressure. If I'm mistaken, please correct me.

In the case of the turbo expander, can more work can be done because the heat and pressure can be converted to kinetic energy by increasing the gases' velocity through the nozzle and doing work on the blades? I have yet to work out the formula for that. Any help would be appreciated.
 
Engineering news on Phys.org
Is this a theoretical question or a practical question?

In theory, if I have gas at temperature T and pressure P going into a black box, with temperature y and pressure p coming out, iit doesn't matter what kind of machinery is in the box - the maximum work is the sane. In practice, it probably depends on more than just piston vs turbine.
 
Vanadium 50 said:
Is this a theoretical question or a practical question?

In theory, if I have gas at temperature T and pressure P going into a black box, with temperature y and pressure p coming out, iit doesn't matter what kind of machinery is in the box - the maximum work is the sane. In practice, it probably depends on more than just piston vs turbine.

Well it’s both. I’m trying to get the temperature lower at the exit of an expander for a desired pressure. The pressure can’t be lower because it feeds a compressor that has a specific compression ratio. I want to be able to use as much of the added heat to the gas as possible to do work. In the piston case, the heat has caused a rise in pressure which can then be used to do work. In the turbine case the heat has caused an increase in velocity and kinetic energy which can then be used to do work.
 
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Thread 'What's the most likely cause for this carbon seal crack?'
We have a molded carbon graphite seal that is used in an inline axial piston, variable displacement hydraulic pump. One of our customers reported that, when using the “A” parts in the past, they only needed to replace them due to normal wear. However, after switching to our parts, the replacement cycle seems to be much shorter due to “broken” or “cracked” failures. This issue was identified after hydraulic fluid leakage was observed. According to their records, the same problem has occurred...
Back
Top