Can an Entire Function Be Non-Zero with Finite Double Integral?

  • Context: Undergrad 
  • Thread starter Thread starter Euge
  • Start date Start date
  • Tags Tags
    2016
Click For Summary
SUMMARY

If \( f \) is an entire function satisfying the condition \( \int_{-\infty}^\infty \int_{-\infty}^\infty |f(x + yi)|^2\, dx\, dy < \infty \), then \( f \) must be identically zero. This conclusion is established through the properties of entire functions and the implications of the finite double integral condition. The solution was effectively demonstrated by user Kokuhaku in the forum discussion.

PREREQUISITES
  • Understanding of entire functions in complex analysis
  • Knowledge of double integrals and their convergence
  • Familiarity with the properties of \( L^2 \) spaces
  • Basic concepts of complex function theory
NEXT STEPS
  • Study the properties of entire functions in complex analysis
  • Learn about \( L^2 \) spaces and their significance in functional analysis
  • Research the implications of the Cauchy-Riemann equations on entire functions
  • Explore the relationship between integrability and analyticity in complex functions
USEFUL FOR

Mathematicians, students of complex analysis, and anyone interested in the properties of entire functions and their integrability conditions.

Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Here is this week's POTW:

-----
Show that if $f$ is an entire function such that $\int_{-\infty}^\infty \int_{-\infty}^\infty \lvert f(x + yi)\rvert^2\, dx\, dy < \infty$, then $f$ is identically zero.-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
This week's problem was solved correctly by Kokuhaku. You can read his solution below.
Note that $\displaystyle \int_{-\infty}^\infty \int_{-\infty}^\infty \lvert f(x + yi)\rvert^2\, dx\, dy = \int_0^\infty \int_0^{2\pi} \lvert f(re^{i\theta}) \rvert^2 r\, d\theta\,dr$ by using polar coordinates. Also, since $f$ is entire function we have $f(z)=\sum_{n=0}^\infty a_n z^n$, where $\displaystyle a_n = \frac{1}{2\pi i} \int_{\lvert z \rvert=r} \frac{f(z)}{z^{n+1}}dz = \frac{1}{2\pi} \int_0^{2\pi} \frac{f(r e^{i \theta})}{r^n} d\theta$ for every $r >0$ and $n \in \mathbb{N}_{\geqslant 0}$. We will prove that $a_n=0$ for $n \in \mathbb{N}_{\geqslant 0}$.

Using representation of $a_n$, we have $\displaystyle \lvert a_n \rvert \leqslant \frac{1}{2\pi} \int_0^{2\pi} \frac{\lvert f(re^{i \theta})\rvert}{r^n} d\theta$. Now, from Cauchy-Schwarz inequality for integrals we obtain $\displaystyle \lvert a_n \rvert ^2 \leqslant \frac{1}{2\pi r^{2n}} \int_0^{2\pi} \lvert f(re^{i \theta})\rvert^2 d\theta$, that is $\displaystyle \lvert a_n \rvert^2 r^{2n+1} \leqslant \frac{1}{2\pi} \int_0^{2\pi} \lvert f(re^{i \theta})\rvert^2 r \,d\theta$. Now, integrating by $\displaystyle \int_0^\infty dr$ we find $\displaystyle \lvert a_n \rvert^2 \int_0^\infty r^{2n+1} \, dr \leqslant \frac{1}{2\pi} \int_0^\infty \int_0^{2\pi} \lvert f(re^{i \theta})\rvert^2 r \,d\theta \,dr$. Since RHS of last inequality is finite and $\displaystyle \int_0^\infty r^{2n+1} \, dr$ diverges, we must have $a_n=0$ for every $n \in \mathbb{N}_{\geqslant 0}$, from which we have $f(z)=0$ for all $z \in \mathbb{C}$.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K