MHB Can an Entire Function Be Non-Zero with Finite Double Integral?

  • Thread starter Thread starter Euge
  • Start date Start date
  • Tags Tags
    2016
Click For Summary
An entire function that has a finite double integral of its squared modulus over the entire complex plane must be identically zero. This is demonstrated by the fact that if the integral of the absolute square of the function is finite, it implies that the function cannot have any non-zero values. The problem was successfully solved by a user named Kokuhaku, who provided a detailed solution. The discussion emphasizes the implications of the properties of entire functions in relation to their integrals. The conclusion reinforces the idea that non-zero entire functions cannot exist under these conditions.
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Here is this week's POTW:

-----
Show that if $f$ is an entire function such that $\int_{-\infty}^\infty \int_{-\infty}^\infty \lvert f(x + yi)\rvert^2\, dx\, dy < \infty$, then $f$ is identically zero.-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
This week's problem was solved correctly by Kokuhaku. You can read his solution below.
Note that $\displaystyle \int_{-\infty}^\infty \int_{-\infty}^\infty \lvert f(x + yi)\rvert^2\, dx\, dy = \int_0^\infty \int_0^{2\pi} \lvert f(re^{i\theta}) \rvert^2 r\, d\theta\,dr$ by using polar coordinates. Also, since $f$ is entire function we have $f(z)=\sum_{n=0}^\infty a_n z^n$, where $\displaystyle a_n = \frac{1}{2\pi i} \int_{\lvert z \rvert=r} \frac{f(z)}{z^{n+1}}dz = \frac{1}{2\pi} \int_0^{2\pi} \frac{f(r e^{i \theta})}{r^n} d\theta$ for every $r >0$ and $n \in \mathbb{N}_{\geqslant 0}$. We will prove that $a_n=0$ for $n \in \mathbb{N}_{\geqslant 0}$.

Using representation of $a_n$, we have $\displaystyle \lvert a_n \rvert \leqslant \frac{1}{2\pi} \int_0^{2\pi} \frac{\lvert f(re^{i \theta})\rvert}{r^n} d\theta$. Now, from Cauchy-Schwarz inequality for integrals we obtain $\displaystyle \lvert a_n \rvert ^2 \leqslant \frac{1}{2\pi r^{2n}} \int_0^{2\pi} \lvert f(re^{i \theta})\rvert^2 d\theta$, that is $\displaystyle \lvert a_n \rvert^2 r^{2n+1} \leqslant \frac{1}{2\pi} \int_0^{2\pi} \lvert f(re^{i \theta})\rvert^2 r \,d\theta$. Now, integrating by $\displaystyle \int_0^\infty dr$ we find $\displaystyle \lvert a_n \rvert^2 \int_0^\infty r^{2n+1} \, dr \leqslant \frac{1}{2\pi} \int_0^\infty \int_0^{2\pi} \lvert f(re^{i \theta})\rvert^2 r \,d\theta \,dr$. Since RHS of last inequality is finite and $\displaystyle \int_0^\infty r^{2n+1} \, dr$ diverges, we must have $a_n=0$ for every $n \in \mathbb{N}_{\geqslant 0}$, from which we have $f(z)=0$ for all $z \in \mathbb{C}$.