Can anyone please verify/check if there's error in this word problem?

Click For Summary

Homework Help Overview

The discussion revolves around a Diophantine equation derived from a word problem involving a check amount expressed in dollars and cents. Participants are analyzing the mathematical steps taken to solve for the values of x (dollars) and y (cents) and are questioning the correctness of the calculations and assumptions made in the proof.

Discussion Character

  • Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants are examining the setup of the Diophantine equation and the application of the Euclidean Algorithm. There are questions about the correctness of the derived values for x and y, particularly regarding the signs used in the calculations. Some participants are also seeking clarification on specific steps in the proof.

Discussion Status

The discussion is ongoing, with participants providing feedback on the original poster's calculations. There is an acknowledgment of potential errors in the proof, particularly concerning the sign of x_o and its implications for the final results. Some participants have offered insights that may help clarify the confusion, but no consensus has been reached yet.

Contextual Notes

Participants are working within the constraints of a homework problem, which may limit the information available for solving the equation. The original poster expresses confusion regarding the expected answer from the textbook compared to their calculations.

Math100
Messages
823
Reaction score
234
Homework Statement
When Mr. Smith cashed a check at his bank, the teller mistook the number of cents for the number of dollars and vice versa. Unaware of this, Mr. Smith spent 68 cents and then noticed to his surprise that he had twice the amount of the original check. Determine the smallest value for which the check could have been written.
[Hint: If x denotes the number of dollars and y the number of cents in the check, then 100y+x-68=2(100x+y).]
Relevant Equations
None.
Proof: Let x be the number of dollars and y be the number of cents in the check.
Then we have 100y+x-68=2(100x+y).
From the hint, we get the following Diophantine equation: -199x+98y=68.
Applying the Euclidean Algorithm produces:
199=2(98)+3
98=32(3)+2
3=1(2)+1
2=2(1)+0.
Now we have gcd(199, 98)=1.
Note that 1##\mid##68.
Since 1##\mid##68, it follows that the Diophantine equation -199x+98y=68 can be solved.
Then we have 1=3-2(1)
=3-(98-32(3))
=33(3)-98
=33(199-2(98))-98
=33(199)-67(98).
This means 68=68[33(199)-67(98)]
=2244(199)-4556(98).
Thus, x\_{o}=2244 and y\_{o}=-4556.
All solutions in the integers are determined by:
x=2244+\frac{98){1}t=2244+98t for some t \in \mathbb{Z},
y=-4556-\frac{-199}{1}t=-4556+199t for some t \in \mathbb{Z}.
Therefore, x=2244+98t and y=-4556+199t.
To find the smallest non-negative integer solutions,
we solve for t:
2244+98t ##\geq## 0 ##\land## -4556+199t ##\geq## 0
t##\geq####\frac{-1122}{49}## ##\land## t##\geq####\frac{4556}{199}##.
Thus, t=23, which implies that x=2244+98(23)=4498 and y=-4556+199(23)=21.

And now I am confused right here, because the answer in my textbook says "The smallest value for which the check could have been written is $10.21, but it doesn't seem like I am getting closer to this final answer/result, although the y-value is 21 does seem reasonable. Can anyone please verify/check my proof for this problem and spot any calculation error or something if anything is incorrect? Thank you.
 
Last edited:
Physics news on Phys.org
In the Diophantine equation, you have ##-199x##, so I think you should have ##x_o = -2248##.
 
  • Like
Likes   Reactions: Math100
vela said:
In the Diophantine equation, you have ##-199x##, so I think you should have ##x_o = -2248##.
Then how should I set up the equation from 3-(98-32*3)=33(3)-98=33(199-2*98)-98?
 
The rest of your work is fine as is. Comparing the Diophantine equation you started with to what you ended up with, it seems that
$$68=2244(199)-4556(98) = -\underbrace{(-2244)}_{x_o}(199)+\underbrace{(-4556)}_{y_o}(98).$$ Note that the wrong result you got, 4498, is equal to ##2\times 2244+10##. Because you used the wrong sign for ##x_o##, you added 2244 instead of subtracting 2244, resulting in the difference of ##2\times 2244##.
 
  • Like
Likes   Reactions: Math100 and sysprog
vela said:
The rest of your work is fine as is. Comparing the Diophantine equation you started with to what you ended up with, it seems that
$$68=2244(199)-4556(98) = -\underbrace{(-2244)}_{x_o}(199)+\underbrace{(-4556)}_{y_o}(98).$$ Note that the wrong result you got, 4498, is equal to ##2\times 2244+10##. Because you used the wrong sign for ##x_o##, you added 2244 instead of subtracting 2244, resulting in the difference of ##2\times 2244##.
Now I got it. Thank you so much for the help!
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
3
Views
11K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 18 ·
Replies
18
Views
13K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K