I have to find the autocorrelation of a random variable. When I compute the theoretical autocorrelation I get the result where it is [1 -2 3 -2 1] centered around zero, and zero everywhere else.(adsbygoogle = window.adsbygoogle || []).push({});

I tried estimating the autocorrelation of the random variable using

ryy_est = xcorr(Y,20, 'unbiased');

in Octave, and I get the exactly same distribution. Can anyone explain to me what is going on? I was under the impression that a correlation can't be greater than 1. I've though about just dividing everything by 3, since it is equal to 3 at m = 0, however I don't know if this would be right, and I still don't know why I am getting values like that.

The random variable is a gaussian random variable of zero mean and unit variance, put through a filter y[n] = x[n] - x[n-1] + x[n -2].

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Can autocorrelation be greater than one?

**Physics Forums | Science Articles, Homework Help, Discussion**