MHB Can co-prime numbers raise to a power that is equal to 1 mod(n)?

  • Thread starter Thread starter Poirot1
  • Start date Start date
  • Tags Tags
    Challenge
AI Thread Summary
The discussion focuses on proving that if a is co-prime to n, where n is the product of two co-prime integers x and y greater than 2, then \( a^{\frac{\phi(n)}{2}} \equiv 1 \mod(n) \). Participants explore the applicability of the Chinese Remainder Theorem (CRT) and clarify that the argument must hold for both x and y to satisfy the equivalence. By applying Euler's theorem, it is established that \( a^{\phi(n)} \equiv 1 \mod(n) \), leading to the conclusion that \( |a^{\frac{\phi(n)}{2}}| \equiv 1 \mod(n) \). A contradiction is reached by assuming \( a^{\frac{\phi(n)}{2}} \equiv -1 \mod(n) \), ultimately confirming the initial claim. The discussion effectively demonstrates the relationship between co-prime numbers and modular arithmetic.
Poirot1
Messages
243
Reaction score
0
Let n =xy be a positive integer where x,y>2 are co-prime. Show that if a is co-prime to n, then $a^{\frac{\phi(n)}{2}}=1$ mod(n)
 
Mathematics news on Phys.org
Re: co-prime challenge

$$a^{\frac{\varphi{(n)}}{2}} \equiv b \pmod{n} ~ ~ ~ ~ \iff ~ ~ ~ ~ a^{\frac{\varphi{(n)}}{2}} \equiv b \pmod{x} ~ ~ ~ ~ \iff ~ ~ ~ ~ a^{\varphi{(x)} \frac{\varphi{(y)}}{2}} \equiv b \pmod{x} ~ ~ ~ ~ \implies ~ ~ ~ ~ b = 1$$
Explanations and justifications below:Step 1: Apply the CRT, since $n = xy$.
Step 2: Definition of the totient function, and $\gcd{(x, y)} = 1$.
Step 3: Recall $\varphi{(y)}$ is even as $y > 2$. Use Euler's Theorem as $\gcd{(a, x)} = 1$.

It occurs to me I've been using the parity property of $\varphi$ an inordinate number of times in the past week ;)​
 
Last edited:
Re: co-prime challenge

Bacterius said:
$$a^{\frac{\varphi{(n)}}{2}} \equiv b \pmod{n} ~ ~ ~ ~ \iff ~ ~ ~ ~ a^{\frac{\varphi{(n)}}{2}} \equiv b \pmod{x} ~ ~ ~ ~ \iff ~ ~ ~ ~ a^{\varphi{(x)} \frac{\varphi{(y)}}{2}} \equiv b \pmod{x} ~ ~ ~ ~ \implies ~ ~ ~ ~ b = 1$$
Explanations and justifications below:Step 1: Apply the CRT, since $n = xy$.
Step 2: Definition of the totient function, and $\gcd{(x, y)} = 1$.
Step 3: Recall $\varphi{(y)}$ is even as $y > 2$. Use Euler's Theorem as $\gcd{(a, x)} = 1$.

It occurs to me I've been using the parity property of $\varphi$ an inordinate number of times in the past week ;)​

Your method is better than mine. But in step 1, wouldn't the CRT be applicable if n and x were co-prime? As it is, the -> direction is clear, but how do you get the <- drection in step 1?
 
Re: co-prime challenge

Poirot said:
Your method is better than mine. But in step 1, wouldn't the CRT be applicable if n and x were co-prime? As it is, the -> direction is clear, but how do you get the <- drection in step 1?

Yes, that is a good point. What is missing is that the step has to follow for both $x$ and $y$ for the equivalence to be fully satisfied (the argument is valid for both factors, so it does hold). Good catch! I guess one could slip a WLOG in there somewhere..​
 
Re: co-prime challenge

By euler's theorem, $a^{\phi(n)}=1$ mod (n). Since n>2, phi(n) is even so that

$a^{{\frac{\phi(n)}{2}}^2}=1$ mod(n)

Thus, $|a^{\frac{\phi(n)}{2}}|=1$ mod(n)

Towards a contradiction, assume $a^{\frac{\phi(n)}{2}}=-1$ mod(n)

-> $a^{\frac{\phi(x)\phi(y)}{2}}=-1$ mod(x) using the multiplicative property of phi and the fact that any multiple of n is a multiple of x also.

since y>2, phi(y) is even so we get:

$a^{{\phi(x)}^{\frac{\phi(y)}{2}}}=-1$ mod(x). But (a,x)=1 so euler's theorem gives $a^{\phi(x)}=1$ mod(x). Also x>2 so 1 is not congruent to -1 mod(x). Therefore a contradiction has been established.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top