MHB Can co-prime numbers raise to a power that is equal to 1 mod(n)?

  • Thread starter Thread starter Poirot1
  • Start date Start date
  • Tags Tags
    Challenge
AI Thread Summary
The discussion focuses on proving that if a is co-prime to n, where n is the product of two co-prime integers x and y greater than 2, then \( a^{\frac{\phi(n)}{2}} \equiv 1 \mod(n) \). Participants explore the applicability of the Chinese Remainder Theorem (CRT) and clarify that the argument must hold for both x and y to satisfy the equivalence. By applying Euler's theorem, it is established that \( a^{\phi(n)} \equiv 1 \mod(n) \), leading to the conclusion that \( |a^{\frac{\phi(n)}{2}}| \equiv 1 \mod(n) \). A contradiction is reached by assuming \( a^{\frac{\phi(n)}{2}} \equiv -1 \mod(n) \), ultimately confirming the initial claim. The discussion effectively demonstrates the relationship between co-prime numbers and modular arithmetic.
Poirot1
Messages
243
Reaction score
0
Let n =xy be a positive integer where x,y>2 are co-prime. Show that if a is co-prime to n, then $a^{\frac{\phi(n)}{2}}=1$ mod(n)
 
Mathematics news on Phys.org
Re: co-prime challenge

$$a^{\frac{\varphi{(n)}}{2}} \equiv b \pmod{n} ~ ~ ~ ~ \iff ~ ~ ~ ~ a^{\frac{\varphi{(n)}}{2}} \equiv b \pmod{x} ~ ~ ~ ~ \iff ~ ~ ~ ~ a^{\varphi{(x)} \frac{\varphi{(y)}}{2}} \equiv b \pmod{x} ~ ~ ~ ~ \implies ~ ~ ~ ~ b = 1$$
Explanations and justifications below:Step 1: Apply the CRT, since $n = xy$.
Step 2: Definition of the totient function, and $\gcd{(x, y)} = 1$.
Step 3: Recall $\varphi{(y)}$ is even as $y > 2$. Use Euler's Theorem as $\gcd{(a, x)} = 1$.

It occurs to me I've been using the parity property of $\varphi$ an inordinate number of times in the past week ;)​
 
Last edited:
Re: co-prime challenge

Bacterius said:
$$a^{\frac{\varphi{(n)}}{2}} \equiv b \pmod{n} ~ ~ ~ ~ \iff ~ ~ ~ ~ a^{\frac{\varphi{(n)}}{2}} \equiv b \pmod{x} ~ ~ ~ ~ \iff ~ ~ ~ ~ a^{\varphi{(x)} \frac{\varphi{(y)}}{2}} \equiv b \pmod{x} ~ ~ ~ ~ \implies ~ ~ ~ ~ b = 1$$
Explanations and justifications below:Step 1: Apply the CRT, since $n = xy$.
Step 2: Definition of the totient function, and $\gcd{(x, y)} = 1$.
Step 3: Recall $\varphi{(y)}$ is even as $y > 2$. Use Euler's Theorem as $\gcd{(a, x)} = 1$.

It occurs to me I've been using the parity property of $\varphi$ an inordinate number of times in the past week ;)​

Your method is better than mine. But in step 1, wouldn't the CRT be applicable if n and x were co-prime? As it is, the -> direction is clear, but how do you get the <- drection in step 1?
 
Re: co-prime challenge

Poirot said:
Your method is better than mine. But in step 1, wouldn't the CRT be applicable if n and x were co-prime? As it is, the -> direction is clear, but how do you get the <- drection in step 1?

Yes, that is a good point. What is missing is that the step has to follow for both $x$ and $y$ for the equivalence to be fully satisfied (the argument is valid for both factors, so it does hold). Good catch! I guess one could slip a WLOG in there somewhere..​
 
Re: co-prime challenge

By euler's theorem, $a^{\phi(n)}=1$ mod (n). Since n>2, phi(n) is even so that

$a^{{\frac{\phi(n)}{2}}^2}=1$ mod(n)

Thus, $|a^{\frac{\phi(n)}{2}}|=1$ mod(n)

Towards a contradiction, assume $a^{\frac{\phi(n)}{2}}=-1$ mod(n)

-> $a^{\frac{\phi(x)\phi(y)}{2}}=-1$ mod(x) using the multiplicative property of phi and the fact that any multiple of n is a multiple of x also.

since y>2, phi(y) is even so we get:

$a^{{\phi(x)}^{\frac{\phi(y)}{2}}}=-1$ mod(x). But (a,x)=1 so euler's theorem gives $a^{\phi(x)}=1$ mod(x). Also x>2 so 1 is not congruent to -1 mod(x). Therefore a contradiction has been established.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top