Can co-prime numbers raise to a power that is equal to 1 mod(n)?

  • Context: MHB 
  • Thread starter Thread starter Poirot1
  • Start date Start date
  • Tags Tags
    Challenge
Click For Summary

Discussion Overview

The discussion revolves around the properties of co-prime numbers and their behavior under exponentiation in modular arithmetic, specifically exploring whether a co-prime number raised to a certain power can equal 1 modulo a product of two co-prime integers.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant proposes that if \( a \) is co-prime to \( n \), then \( a^{\frac{\phi(n)}{2}} \equiv 1 \mod(n) \).
  • Another participant questions the applicability of the Chinese Remainder Theorem (CRT) in the context of their argument, specifically regarding the direction of implications in their proof.
  • A later reply acknowledges the previous point and suggests that the argument must hold for both co-prime factors \( x \) and \( y \) to satisfy the equivalence fully.
  • One participant invokes Euler's theorem to argue that \( a^{\phi(n)} \equiv 1 \mod(n) \) and explores the implications of assuming \( a^{\frac{\phi(n)}{2}} \equiv -1 \mod(n) \), leading to a contradiction.

Areas of Agreement / Disagreement

Participants express differing views on the application of the CRT and the validity of certain steps in the proof, indicating that the discussion remains unresolved with multiple competing perspectives.

Contextual Notes

The discussion includes assumptions about the properties of co-prime integers and the behavior of the Euler's totient function, which may not be fully explored or agreed upon by all participants.

Poirot1
Messages
243
Reaction score
0
Let n =xy be a positive integer where x,y>2 are co-prime. Show that if a is co-prime to n, then $a^{\frac{\phi(n)}{2}}=1$ mod(n)
 
Physics news on Phys.org
Re: co-prime challenge

$$a^{\frac{\varphi{(n)}}{2}} \equiv b \pmod{n} ~ ~ ~ ~ \iff ~ ~ ~ ~ a^{\frac{\varphi{(n)}}{2}} \equiv b \pmod{x} ~ ~ ~ ~ \iff ~ ~ ~ ~ a^{\varphi{(x)} \frac{\varphi{(y)}}{2}} \equiv b \pmod{x} ~ ~ ~ ~ \implies ~ ~ ~ ~ b = 1$$
Explanations and justifications below:Step 1: Apply the CRT, since $n = xy$.
Step 2: Definition of the totient function, and $\gcd{(x, y)} = 1$.
Step 3: Recall $\varphi{(y)}$ is even as $y > 2$. Use Euler's Theorem as $\gcd{(a, x)} = 1$.

It occurs to me I've been using the parity property of $\varphi$ an inordinate number of times in the past week ;)​
 
Last edited:
Re: co-prime challenge

Bacterius said:
$$a^{\frac{\varphi{(n)}}{2}} \equiv b \pmod{n} ~ ~ ~ ~ \iff ~ ~ ~ ~ a^{\frac{\varphi{(n)}}{2}} \equiv b \pmod{x} ~ ~ ~ ~ \iff ~ ~ ~ ~ a^{\varphi{(x)} \frac{\varphi{(y)}}{2}} \equiv b \pmod{x} ~ ~ ~ ~ \implies ~ ~ ~ ~ b = 1$$
Explanations and justifications below:Step 1: Apply the CRT, since $n = xy$.
Step 2: Definition of the totient function, and $\gcd{(x, y)} = 1$.
Step 3: Recall $\varphi{(y)}$ is even as $y > 2$. Use Euler's Theorem as $\gcd{(a, x)} = 1$.

It occurs to me I've been using the parity property of $\varphi$ an inordinate number of times in the past week ;)​

Your method is better than mine. But in step 1, wouldn't the CRT be applicable if n and x were co-prime? As it is, the -> direction is clear, but how do you get the <- drection in step 1?
 
Re: co-prime challenge

Poirot said:
Your method is better than mine. But in step 1, wouldn't the CRT be applicable if n and x were co-prime? As it is, the -> direction is clear, but how do you get the <- drection in step 1?

Yes, that is a good point. What is missing is that the step has to follow for both $x$ and $y$ for the equivalence to be fully satisfied (the argument is valid for both factors, so it does hold). Good catch! I guess one could slip a WLOG in there somewhere..​
 
Re: co-prime challenge

By euler's theorem, $a^{\phi(n)}=1$ mod (n). Since n>2, phi(n) is even so that

$a^{{\frac{\phi(n)}{2}}^2}=1$ mod(n)

Thus, $|a^{\frac{\phi(n)}{2}}|=1$ mod(n)

Towards a contradiction, assume $a^{\frac{\phi(n)}{2}}=-1$ mod(n)

-> $a^{\frac{\phi(x)\phi(y)}{2}}=-1$ mod(x) using the multiplicative property of phi and the fact that any multiple of n is a multiple of x also.

since y>2, phi(y) is even so we get:

$a^{{\phi(x)}^{\frac{\phi(y)}{2}}}=-1$ mod(x). But (a,x)=1 so euler's theorem gives $a^{\phi(x)}=1$ mod(x). Also x>2 so 1 is not congruent to -1 mod(x). Therefore a contradiction has been established.
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
27
Views
4K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K